首页 > 试题

吸收英文

更新时间:2022-12-03 08:15:57 阅读: 评论:0

初三寒假课程规划-人才倍出


2022年12月3日发(作者:医保存折)

EnergyProcedia00(2010)000–000

Energy

Procedia

/locate/XXX

GHGT-10

Developmentofpost-combustionCO

2

capturewithCaO/CaCO

3

looping

inabenchscaleplant

Chin-MingHuang,Heng-WenHsu,Wan-HsiaLiu,Jui-YenCheng,Wei-Cheng

Chen,Tzeng-WenWen,WangChen

IndustrialTechnologyRearchInstitute,Hsinchu310,Taiwan,R.O.C

Elvieruonly:Receiveddatehere;reviddatehere;accepteddatehere

Abstract

SeveralsystemsforCO

2

captureusingCaOasregenerablesorbentareunder

developmentatIndustrialTechnologyRearchInstitute(ITRI).CaO/CaCO

3

loopingof

carbondioxidecapturesystemcanalsobeudforbothpre-combustionandpost-

ent,ITRIhastablishedapost-combustion1

kWCaO/CaCO

3

carbon

devicemadeup0.1kg/hourofnewCaOwhichhasbeenunder57hoursofcontinuous

eefficienciesabove99%havebeenobtainedunderrealisticfluegas

conditionsinthecarbonatorreactor.

Inthefuture,powergeneration,petrochemicalindustryandsteelandironindustries

arethefirsttobeconsideredforreductionofCO

2

listoestablisha1

MW(5thousandtonsofCO

2

everyyear)pilotplantin2011,10to30MW(50to

150thousandtonsCO

2

everyyear)demonstrationplantin2020andacommercialplant

tion,ITRIhastorearchanddevelopthe

CO

2

capturetechnologiesfromfluegasincludingGasificationorIntegrated

GasificationCombinedCycle(IGCC),CaO/CaCO

3

loopingandinnovativemeso-porous

nanomaterialsforCO

2

adsorption.

©htsrerved

Keywords:CO

2

Capture;CaO/CaCO

3

looping;Carbonator;Calciner;Pilottesting

c

⃝2011PublishedbyElvierLtd.

EnergyProcedia4(2011)1268–1275

/locate/procedia

doi:10.1016/.2011.01.183

uction

Carbondioxidethecomesfromcombustionoffossilfuelisthemajor

trolanddecreaof

anthropogenicCO

2

emissionsfromfossilfueledpowerplantsabatement

playimportantrolesforatmosphericCO

2

concentrationreduction.

Generally,thereareveraloptionsforatmosphericcarbondioxide

concentrationcontrolling,suchasthesubstitutionofnuclearpowerfor

fossilfuels,powerefficiencyimprovementofthefossilplantsandthe

CO

2

ssioncontrollingtechnologyof

carbondioxidebyusingthesorption/desorptionconceptwiththesorbent

isawidelyappliedmethodfortheFluidizedBedCombustor(FBC)fluegas

eenergypointofview,therefore,theparationof

carbondioxidefromtheemissionsource,suchascoal-firedpowerplants,

hasbeenconsideredasaneffectivemitigationoptionforclimate

change.(1,2,3)

SolidsorbentsforCO

2

parationincludesodiumandpotassium

oxides,zeolites,carbonates,amine-enrichedsorbent,hem,

thecalciumsorbents(CaO)isudwidelyinfluidizedbedcombustionfor

tion,it

hasbeenwellknownthatthefreshcalcinedlimecanbecarbonated

,thecalcium-

badsorbentshasbeensuggestedtobeanattractivematerialforcarbon

dioxideremovesduetoitslowcost,highadsorptioncapacityandhigh

reversibilityofCO

2

.ThemechanismofCO

2

capture/releaofcalcium

sorbentcanbedividedintotwostep,carbonationandcalcination:

CaO+CO

2

àCaCO

3

(1)

CaCO

3

àCaO+CO

2

(2)

ThecalcinationofCaCO

3

isanendothermic,meantheforward

reactionishighertemperaturefavorable.(4,5)

CO

2

parationfromfluegasbyCaO-badsorbentsinfluidizedbed

combustion(FBC)systemisanintensivelyinvestigatedtechnologyfor

thereductionofCO

2

icalschemeoftheCO

2

remove

processcouldbedepictedasFigure1.

CarbonatorCalciner

CaCO

3

CaO

CaCO

3

O

2

CO

2

Fluegas

Fluegas

Figure1TheschemeofCO

2

parationloopbyCaO-badsorbents.

C.-tal./EnergyProcedia4(2011)1268–12751269

Accordingtothementionedabove,thecarbonationprocessofcalcium

sorbents(CaO)withCO

2

isthebasisreactionforthecapturetechnology

inthishightemperatureCaO/CaCO

3

,allCaO

sorbentsudinthisloopcomefromthecalcinationprocessofCaCO

3

,at

around800~arbonator,thehighporousCaOsorbentswere

treatedwithadilutedCO

2

streamandfurtherformedCaCO

3

ata

sorbentswereregeneratedbya

calcinationreactionathighertemperaturebetween850~900oC,andthe

CO

2

eingreducedin

parate(cracker)vesl,theCaCO

3

transferstoCaOandfurtherreturns

tothecarbonationveslforCO

2

capture.

Theobjectiveofthisrearchistodevelophighperformancesorbents

forCO

2

hefinitetimeofexposure

andlowutilizationofthelimestone,increasingthecalciumutilization

thiswork,CaOsorbentswithporousstructureandhighcapacityofCO

2

rographs,surfacearea,

porestructural,activity,cyclelife,andcharacteristicpropertiesofCaO

tion,anatmosphericsmallpilotCaO

carbonation/calcinationsystemwasalsoestablishedforpractical

applicationofcarbondioxideparation.

mental

Experimentshavebeenconductedina1kWtestfacilitybuiltatITRI,madeupofone

bubblingfluidizedbedcarbonatorandonemovingbedcalcinerasshowninFigure2.

ing

fromthebubblingfluidized

are

eis0.5mlongwith1

reofgascontainingCO

2

(airfromablowerandCO

2

from

acylinder)atthefluidizedgasincarbonatorismixing

by85%airand15%CO

2

distributorislocatedatthe

lessizeofCaCO

3

aredistributedbetween250-

500μncarbideheatingrodscoversurroundthecarbonatorandthecalciner,

whichcanmaintainthemovingbedatthetemperature800~900andthebubbling℃

fluidizedbedatthetemperature600~O℃

3

calcination/carbonationstudies

ontinuous-modeoperationanditmakesup

0.1kgfreshCaCO

3

modewhichneedstoemaintainthebubbling

fluidizedbedatthetemperatureof600~700andthemovingbedatthetemperature℃

800~900.℃ThebubblingfluidizedbedatthebottomofΔPbetween100~150cm-H

2

O,

thatgasvelocitiesarevariedbetween0.2-0.4m/erisbatch-modeoperation

withoutmakingupfreshCaCO

3

.Inthismodewhichneedtomaintainthebubbling

fluidizedbedatthetemperatureof600~700andthemovingbedatthetemperature℃of

1270C.-tal./EnergyProcedia4(2011)1268–1275

600~700.℃ThebubblingfluidizedbedatthebottomofΔPbetween100~150cm-H

2

O,

thatgasvelocitiesarevariedbetween0.2-0.4m/tatedgasinthecalcination

ameplaceprepareforaholewhenweusteamto

calcination.

Priortostartingtheoperation,industrialgradelimestonewassubjectedto

decompositioninthecalcinationveslatthetemperaturearound850.℃InadditionCaO

sorbentswithhighlyporousstructureandsurfaceareawereobtainedwhenthelimestone

process,approximately8.4kgofCaO

werefluidizedinthecarbonatorcolumnandcontactedwithCO

2

toformCaCO

3

.7.6kg

ofCaOremaininthemovingbed,rhand,

concentrationofCO

2

attheexitofthesystemwasalsodeterminedforefficiency

estimatingofCO

2

capture.

Figure2Schematicandsitephotoofthebubblingfluidizedbedreactorandmovingbed

reactortotestCaO/CaCO

3

loopingatITRI.

sandDiscussion

Wehaveoperationofthecontinuous-modeandcompletedthecontinuoustestof

CaO/CaCO

3

2

capture

Tefficiencyismorethan99%.(

2

is14~16%).Figure3iscontinuous-

modeoperationduring57hourswhichtheoriginalCO

2

concentrationofcarbonatorflue

arttofinishwefindtheconcentrationofCO

2

intheexport

valueoflessthanoneinstrument(TESTO-350S)ofthedetectionlimit(0.1%).Our

4isthe

CO

2

thisfigurewecanetheCO

2

captureefficiencyismaintainedatabove99%.Figures3

and4bythecomparisonoftheinletcanbefoundalthoughtheCO

2

concentration

C.-tal./EnergyProcedia4(2011)1268–12751271

changesovertimearedifferent,butoutletoftheCO

2

concentrationarelowerthanthe

detectionlimitofcarbondioxidecaptureefficiencycarbonatortomaintainmorethan

99%.TheCO

2

ddCaO

0.1kgperhour,orecarbonatorCaCO

3

/CaOratios

insidethecoverindeterminingthequantityofCaObecomextremelyimportant.

tiontoexcessivesoastomake

upforcaptureefficiencycanbemaintainedabove99%.Abanadetal.(2009)issueda

30kWtestfacilityinthepaperreferredtotwointerconnectedcirculatingfluidizedbed

reactorscaptureefficiencyof88%.(6)Althoughbotharefluidizedbeds,butITRI's

carbonatorisbubblingfluidizedbedreactorandCSIC-INCAR'scarbonatoriscirculating

-INCARthecarbonationreactorfurnacegasvelocitiesis

variedbetween1.5-3.5m/scomparedwithITRIofgasvelocitiesisvariedbetween0.2-

0.4m/sfaster,CaOandCO

2

maybeinsufficientreactiontimecaudbythedifference

'sreactiontimeisabout5-10condsandCSIC-INCAR's

reactiontimeisabout0.9-2conds.

0

4

8

12

16

354045505560

Time(hours)

C

O

2

c

o

n

c

e

n

t

r

a

t

i

o

n

(

%)

CO2inletconcentration

CO2outletconcentration

Figure3Itiscontinuous-modeoperationduring57hourswhichtheoriginalCO

2

concentrationofcarbonatorfluegasinletandoutlet.

0

20

40

60

80

100

354045505560

Time(hours)

C

a

p

t

u

r

e

e

f

f

i

c

i

e

n

c

y

(

%)

Figure4ItisCO

2

captureefficiencyduring57hoursinthecontinuous-mode

operation.

1272C.-tal./EnergyProcedia4(2011)1268–1275

Figure5~5isthefirstcyclein

thebatch-modeoperationofcalcination/figurewecanfind

thebeginningofthewholesystemCaOweighed15kgin400minuteswhenthe

carbonatormaintainedmorethan80%stcycle'sbreakthrough

curvereachedbelowcaptureefficiency10%6isthe

condcycleinthebatch-modeoperationofcalcination/

figurewecanfindthebeginningofthewholesystemCaOweighed15kgin230minutes

whenthecarbonatormaintainedmorethan80%ondcycle's

breakthroughcurvereachedbelowcaptureefficiency10%afterabout690minutes.

Figure7isthethirdcycleinthebatch-modeoperationofcalcination/carbonationstudies.

InthisfigurewecanfindthebeginningofthewholesystemCaOweighed15kgin105

minuteswhenthecarbonatormaintainedmorethan80%rd

cycle'sbreakthroughcurvereachedbelowcaptureefficiency10%afterabout400

8isthefourthcycleinthebatch-modeoperationof

calcination/figurewecanfindthebeginningofthewhole

systemCaOweighed15kgin115minuteswhenthecarbonatormaintainedmorethan

80%rthcycle'sbreakthroughcurvereachedbelowcapture

efficiency10%afterabout370minutes.

Thethirdcyclesandthefourthcyclesresultsaredifferentfromthethermogravimetric

analyzer(TGA).Figure9showstheTGAdatarecordedCaCO

3

athightemperatureof

3

oftheconversionbytheTGAwasreducedwhencalcination/

rdcycleandthefourthcyclehavethesameresult,so

stheparticlesizeofthechangeisalikelycau.

Table1isfirsttofourthcyclestheparticlesizeofthebatch-mode

3

oftheparticlesizeduringrepeatedexperimentwill

3

'sandthefourthcycle'sparticlesizeare

thesame,perhapsitcanbeincreadthecaptureefficiency.

Firstcycle

0

20

40

60

80

100

0

Time(minutes)

C

a

p

t

u

r

e

e

f

f

i

c

i

e

n

c

y

(

%)

Secondcycle

0

20

40

60

80

100

0

Time(minutes)

C

a

p

t

u

r

e

e

f

f

i

c

i

e

n

c

y

(

%)

Figure5Firstcycleofbatch-mode

operation.

Figure6Secondcycleofbatch-mode

operation.

C.-tal./EnergyProcedia4(2011)1268–12751273

Thirdcycle

0

20

40

60

80

100

0

Time(minutes)

C

a

p

t

u

r

e

e

f

f

i

c

i

e

n

c

y

(

%)

Fourthcycle

0

20

40

60

80

100

0

Time(minutes)

C

a

p

t

u

r

e

e

f

f

i

c

i

e

n

c

y

(

%)

Figure7Thirdcycleofbatch-mode

operation.

Figure8Fourthcycleofbatch-mode

operation.

0

20

40

60

80

100

010203040

Time(hours)

C

o

n

v

e

r

s

i

o

n

(

%)

Fig.9Conversionvstimeforcalcination/one:

Taiwan,ationtemperature850°C,30min,

N

2

:100cc/min;carbonationtemperature650°C,40min,CO

2

:100cc/min.

Table1Firsttofourthcyclestheparticlesizeofthebatch-modeoperation.

CycleFirstSecondThirdFourthOriginal

MeanSize(μm)275.86192.83187.46184.81262.53

MedianSize(μm)252.13195.20190.63186.76255.00

.(μm)128.76120.3386.5363.08385.15

work

TheresultsprentedabovedeterminetouCaO/CaCO

3

loopingtocaptureCO

2

isa

tofnewinformationpublishedbyotherauthorsfromtheir

cognizedduringthebatch-mode

operationwiththeproblemsandgettherighttoadd,we'llcontinuetobatch-mode

1274C.-tal./EnergyProcedia4(2011)1268–1275

Iisabletostabilizethebubblefluidizedbedoperationbutthe

llbetheendoftheyearixpectedtochange

tfacilitywill

cod

atawill

providethispilot.

sion

CaO/CaCO

3

loopingisverypromisingconceptforpost-combustionCO

2

capture

rkhasshownthatthebubblefluidizedbedcarbonator,worksasa

higheffectiveCO

2

le

size,CaOincreanumberandCaCO

3

/CaOratiosassociatedtotheoperationofthe

esultsfroma1kWtestfacilitydesigned,

ctshave

plantoaddmanyexperimentsandgetexperienceanddesigndataforthe1MWscale

pilot.

ledgement

TheauthorswouldliketoacknowledgethesupportfromtheEnergyFundofMinistry

ofEconomicsAffairs,Taiwan.

nces

-[1]ShimizuT,HiramaT,HosodaH,KitanoK,InagakiM,luid-bed

reactorforremovalofCO

2

ctionsofIChemE

1999;77(partA):62–8.

-[2]SalvadorC,LuD,AnthonyEJ,ementofCaOforCO

2

capture

alEngineeringJournal2003;96:187–195.

-[3]AbanadesJC,AnthonyEJ,WangJ,zedbedcombustionsystems

integratingCO

2

nmentalScienceandTechnology

2005;39:2861–6.

-[4]PrasannanPC,RamachandranPA,forgas–solid

alEngineering

Science1985;40:1251–1261.

-[5]DuoW,SevillJPsK,KirkbyNF,ionofproductlayersinsolid–gas

alEngineeringScience1994;49:4429–4442.

-[6]AbanadesJC,AlonsoM,RodríguezN,GonzálezB,GrasaG,ing

CO

2

mental

resultsandprocessdevelopment,EnergyProcedia2009;1:1147-1154.

C.-tal./EnergyProcedia4(2011)1268–12751275

本文发布于:2022-12-03 08:15:57,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/43298.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:吸收英文
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图