EnergyProcedia00(2010)000–000
Energy
Procedia
/locate/XXX
GHGT-10
Developmentofpost-combustionCO
2
capturewithCaO/CaCO
3
looping
inabenchscaleplant
Chin-MingHuang,Heng-WenHsu,Wan-HsiaLiu,Jui-YenCheng,Wei-Cheng
Chen,Tzeng-WenWen,WangChen
IndustrialTechnologyRearchInstitute,Hsinchu310,Taiwan,R.O.C
Elvieruonly:Receiveddatehere;reviddatehere;accepteddatehere
Abstract
SeveralsystemsforCO
2
captureusingCaOasregenerablesorbentareunder
developmentatIndustrialTechnologyRearchInstitute(ITRI).CaO/CaCO
3
loopingof
carbondioxidecapturesystemcanalsobeudforbothpre-combustionandpost-
ent,ITRIhastablishedapost-combustion1
kWCaO/CaCO
3
carbon
devicemadeup0.1kg/hourofnewCaOwhichhasbeenunder57hoursofcontinuous
eefficienciesabove99%havebeenobtainedunderrealisticfluegas
conditionsinthecarbonatorreactor.
Inthefuture,powergeneration,petrochemicalindustryandsteelandironindustries
arethefirsttobeconsideredforreductionofCO
2
listoestablisha1
MW(5thousandtonsofCO
2
everyyear)pilotplantin2011,10to30MW(50to
150thousandtonsCO
2
everyyear)demonstrationplantin2020andacommercialplant
tion,ITRIhastorearchanddevelopthe
CO
2
capturetechnologiesfromfluegasincludingGasificationorIntegrated
GasificationCombinedCycle(IGCC),CaO/CaCO
3
loopingandinnovativemeso-porous
nanomaterialsforCO
2
adsorption.
©htsrerved
Keywords:CO
2
Capture;CaO/CaCO
3
looping;Carbonator;Calciner;Pilottesting
c
⃝2011PublishedbyElvierLtd.
EnergyProcedia4(2011)1268–1275
/locate/procedia
doi:10.1016/.2011.01.183
uction
Carbondioxidethecomesfromcombustionoffossilfuelisthemajor
trolanddecreaof
anthropogenicCO
2
emissionsfromfossilfueledpowerplantsabatement
playimportantrolesforatmosphericCO
2
concentrationreduction.
Generally,thereareveraloptionsforatmosphericcarbondioxide
concentrationcontrolling,suchasthesubstitutionofnuclearpowerfor
fossilfuels,powerefficiencyimprovementofthefossilplantsandthe
CO
2
ssioncontrollingtechnologyof
carbondioxidebyusingthesorption/desorptionconceptwiththesorbent
isawidelyappliedmethodfortheFluidizedBedCombustor(FBC)fluegas
eenergypointofview,therefore,theparationof
carbondioxidefromtheemissionsource,suchascoal-firedpowerplants,
hasbeenconsideredasaneffectivemitigationoptionforclimate
change.(1,2,3)
SolidsorbentsforCO
2
parationincludesodiumandpotassium
oxides,zeolites,carbonates,amine-enrichedsorbent,hem,
thecalciumsorbents(CaO)isudwidelyinfluidizedbedcombustionfor
tion,it
hasbeenwellknownthatthefreshcalcinedlimecanbecarbonated
,thecalcium-
badsorbentshasbeensuggestedtobeanattractivematerialforcarbon
dioxideremovesduetoitslowcost,highadsorptioncapacityandhigh
reversibilityofCO
2
.ThemechanismofCO
2
capture/releaofcalcium
sorbentcanbedividedintotwostep,carbonationandcalcination:
CaO+CO
2
àCaCO
3
(1)
CaCO
3
àCaO+CO
2
(2)
ThecalcinationofCaCO
3
isanendothermic,meantheforward
reactionishighertemperaturefavorable.(4,5)
CO
2
parationfromfluegasbyCaO-badsorbentsinfluidizedbed
combustion(FBC)systemisanintensivelyinvestigatedtechnologyfor
thereductionofCO
2
icalschemeoftheCO
2
remove
processcouldbedepictedasFigure1.
CarbonatorCalciner
CaCO
3
CaO
CaCO
3
O
2
CO
2
Fluegas
Fluegas
Figure1TheschemeofCO
2
parationloopbyCaO-badsorbents.
C.-tal./EnergyProcedia4(2011)1268–12751269
Accordingtothementionedabove,thecarbonationprocessofcalcium
sorbents(CaO)withCO
2
isthebasisreactionforthecapturetechnology
inthishightemperatureCaO/CaCO
3
,allCaO
sorbentsudinthisloopcomefromthecalcinationprocessofCaCO
3
,at
around800~arbonator,thehighporousCaOsorbentswere
treatedwithadilutedCO
2
streamandfurtherformedCaCO
3
ata
sorbentswereregeneratedbya
calcinationreactionathighertemperaturebetween850~900oC,andthe
CO
2
eingreducedin
parate(cracker)vesl,theCaCO
3
transferstoCaOandfurtherreturns
tothecarbonationveslforCO
2
capture.
Theobjectiveofthisrearchistodevelophighperformancesorbents
forCO
2
hefinitetimeofexposure
andlowutilizationofthelimestone,increasingthecalciumutilization
thiswork,CaOsorbentswithporousstructureandhighcapacityofCO
2
rographs,surfacearea,
porestructural,activity,cyclelife,andcharacteristicpropertiesofCaO
tion,anatmosphericsmallpilotCaO
carbonation/calcinationsystemwasalsoestablishedforpractical
applicationofcarbondioxideparation.
mental
Experimentshavebeenconductedina1kWtestfacilitybuiltatITRI,madeupofone
bubblingfluidizedbedcarbonatorandonemovingbedcalcinerasshowninFigure2.
ing
fromthebubblingfluidized
are
eis0.5mlongwith1
reofgascontainingCO
2
(airfromablowerandCO
2
from
acylinder)atthefluidizedgasincarbonatorismixing
by85%airand15%CO
2
distributorislocatedatthe
lessizeofCaCO
3
aredistributedbetween250-
500μncarbideheatingrodscoversurroundthecarbonatorandthecalciner,
whichcanmaintainthemovingbedatthetemperature800~900andthebubbling℃
fluidizedbedatthetemperature600~O℃
3
calcination/carbonationstudies
ontinuous-modeoperationanditmakesup
0.1kgfreshCaCO
3
modewhichneedstoemaintainthebubbling
fluidizedbedatthetemperatureof600~700andthemovingbedatthetemperature℃
800~900.℃ThebubblingfluidizedbedatthebottomofΔPbetween100~150cm-H
2
O,
thatgasvelocitiesarevariedbetween0.2-0.4m/erisbatch-modeoperation
withoutmakingupfreshCaCO
3
.Inthismodewhichneedtomaintainthebubbling
fluidizedbedatthetemperatureof600~700andthemovingbedatthetemperature℃of
1270C.-tal./EnergyProcedia4(2011)1268–1275
600~700.℃ThebubblingfluidizedbedatthebottomofΔPbetween100~150cm-H
2
O,
thatgasvelocitiesarevariedbetween0.2-0.4m/tatedgasinthecalcination
ameplaceprepareforaholewhenweusteamto
calcination.
Priortostartingtheoperation,industrialgradelimestonewassubjectedto
decompositioninthecalcinationveslatthetemperaturearound850.℃InadditionCaO
sorbentswithhighlyporousstructureandsurfaceareawereobtainedwhenthelimestone
process,approximately8.4kgofCaO
werefluidizedinthecarbonatorcolumnandcontactedwithCO
2
toformCaCO
3
.7.6kg
ofCaOremaininthemovingbed,rhand,
concentrationofCO
2
attheexitofthesystemwasalsodeterminedforefficiency
estimatingofCO
2
capture.
Figure2Schematicandsitephotoofthebubblingfluidizedbedreactorandmovingbed
reactortotestCaO/CaCO
3
loopingatITRI.
sandDiscussion
Wehaveoperationofthecontinuous-modeandcompletedthecontinuoustestof
CaO/CaCO
3
2
capture
Tefficiencyismorethan99%.(
2
is14~16%).Figure3iscontinuous-
modeoperationduring57hourswhichtheoriginalCO
2
concentrationofcarbonatorflue
arttofinishwefindtheconcentrationofCO
2
intheexport
valueoflessthanoneinstrument(TESTO-350S)ofthedetectionlimit(0.1%).Our
4isthe
CO
2
thisfigurewecanetheCO
2
captureefficiencyismaintainedatabove99%.Figures3
and4bythecomparisonoftheinletcanbefoundalthoughtheCO
2
concentration
C.-tal./EnergyProcedia4(2011)1268–12751271
changesovertimearedifferent,butoutletoftheCO
2
concentrationarelowerthanthe
detectionlimitofcarbondioxidecaptureefficiencycarbonatortomaintainmorethan
99%.TheCO
2
ddCaO
0.1kgperhour,orecarbonatorCaCO
3
/CaOratios
insidethecoverindeterminingthequantityofCaObecomextremelyimportant.
tiontoexcessivesoastomake
upforcaptureefficiencycanbemaintainedabove99%.Abanadetal.(2009)issueda
30kWtestfacilityinthepaperreferredtotwointerconnectedcirculatingfluidizedbed
reactorscaptureefficiencyof88%.(6)Althoughbotharefluidizedbeds,butITRI's
carbonatorisbubblingfluidizedbedreactorandCSIC-INCAR'scarbonatoriscirculating
-INCARthecarbonationreactorfurnacegasvelocitiesis
variedbetween1.5-3.5m/scomparedwithITRIofgasvelocitiesisvariedbetween0.2-
0.4m/sfaster,CaOandCO
2
maybeinsufficientreactiontimecaudbythedifference
'sreactiontimeisabout5-10condsandCSIC-INCAR's
reactiontimeisabout0.9-2conds.
0
4
8
12
16
354045505560
Time(hours)
C
O
2
c
o
n
c
e
n
t
r
a
t
i
o
n
(
%)
CO2inletconcentration
CO2outletconcentration
Figure3Itiscontinuous-modeoperationduring57hourswhichtheoriginalCO
2
concentrationofcarbonatorfluegasinletandoutlet.
0
20
40
60
80
100
354045505560
Time(hours)
C
a
p
t
u
r
e
e
f
f
i
c
i
e
n
c
y
(
%)
Figure4ItisCO
2
captureefficiencyduring57hoursinthecontinuous-mode
operation.
1272C.-tal./EnergyProcedia4(2011)1268–1275
Figure5~5isthefirstcyclein
thebatch-modeoperationofcalcination/figurewecanfind
thebeginningofthewholesystemCaOweighed15kgin400minuteswhenthe
carbonatormaintainedmorethan80%stcycle'sbreakthrough
curvereachedbelowcaptureefficiency10%6isthe
condcycleinthebatch-modeoperationofcalcination/
figurewecanfindthebeginningofthewholesystemCaOweighed15kgin230minutes
whenthecarbonatormaintainedmorethan80%ondcycle's
breakthroughcurvereachedbelowcaptureefficiency10%afterabout690minutes.
Figure7isthethirdcycleinthebatch-modeoperationofcalcination/carbonationstudies.
InthisfigurewecanfindthebeginningofthewholesystemCaOweighed15kgin105
minuteswhenthecarbonatormaintainedmorethan80%rd
cycle'sbreakthroughcurvereachedbelowcaptureefficiency10%afterabout400
8isthefourthcycleinthebatch-modeoperationof
calcination/figurewecanfindthebeginningofthewhole
systemCaOweighed15kgin115minuteswhenthecarbonatormaintainedmorethan
80%rthcycle'sbreakthroughcurvereachedbelowcapture
efficiency10%afterabout370minutes.
Thethirdcyclesandthefourthcyclesresultsaredifferentfromthethermogravimetric
analyzer(TGA).Figure9showstheTGAdatarecordedCaCO
3
athightemperatureof
3
oftheconversionbytheTGAwasreducedwhencalcination/
rdcycleandthefourthcyclehavethesameresult,so
stheparticlesizeofthechangeisalikelycau.
Table1isfirsttofourthcyclestheparticlesizeofthebatch-mode
3
oftheparticlesizeduringrepeatedexperimentwill
3
'sandthefourthcycle'sparticlesizeare
thesame,perhapsitcanbeincreadthecaptureefficiency.
Firstcycle
0
20
40
60
80
100
0
Time(minutes)
C
a
p
t
u
r
e
e
f
f
i
c
i
e
n
c
y
(
%)
Secondcycle
0
20
40
60
80
100
0
Time(minutes)
C
a
p
t
u
r
e
e
f
f
i
c
i
e
n
c
y
(
%)
Figure5Firstcycleofbatch-mode
operation.
Figure6Secondcycleofbatch-mode
operation.
C.-tal./EnergyProcedia4(2011)1268–12751273
Thirdcycle
0
20
40
60
80
100
0
Time(minutes)
C
a
p
t
u
r
e
e
f
f
i
c
i
e
n
c
y
(
%)
Fourthcycle
0
20
40
60
80
100
0
Time(minutes)
C
a
p
t
u
r
e
e
f
f
i
c
i
e
n
c
y
(
%)
Figure7Thirdcycleofbatch-mode
operation.
Figure8Fourthcycleofbatch-mode
operation.
0
20
40
60
80
100
010203040
Time(hours)
C
o
n
v
e
r
s
i
o
n
(
%)
Fig.9Conversionvstimeforcalcination/one:
Taiwan,ationtemperature850°C,30min,
N
2
:100cc/min;carbonationtemperature650°C,40min,CO
2
:100cc/min.
Table1Firsttofourthcyclestheparticlesizeofthebatch-modeoperation.
CycleFirstSecondThirdFourthOriginal
MeanSize(μm)275.86192.83187.46184.81262.53
MedianSize(μm)252.13195.20190.63186.76255.00
.(μm)128.76120.3386.5363.08385.15
work
TheresultsprentedabovedeterminetouCaO/CaCO
3
loopingtocaptureCO
2
isa
tofnewinformationpublishedbyotherauthorsfromtheir
cognizedduringthebatch-mode
operationwiththeproblemsandgettherighttoadd,we'llcontinuetobatch-mode
1274C.-tal./EnergyProcedia4(2011)1268–1275
Iisabletostabilizethebubblefluidizedbedoperationbutthe
llbetheendoftheyearixpectedtochange
tfacilitywill
cod
atawill
providethispilot.
sion
CaO/CaCO
3
loopingisverypromisingconceptforpost-combustionCO
2
capture
rkhasshownthatthebubblefluidizedbedcarbonator,worksasa
higheffectiveCO
2
le
size,CaOincreanumberandCaCO
3
/CaOratiosassociatedtotheoperationofthe
esultsfroma1kWtestfacilitydesigned,
ctshave
plantoaddmanyexperimentsandgetexperienceanddesigndataforthe1MWscale
pilot.
ledgement
TheauthorswouldliketoacknowledgethesupportfromtheEnergyFundofMinistry
ofEconomicsAffairs,Taiwan.
nces
-[1]ShimizuT,HiramaT,HosodaH,KitanoK,InagakiM,luid-bed
reactorforremovalofCO
2
ctionsofIChemE
1999;77(partA):62–8.
-[2]SalvadorC,LuD,AnthonyEJ,ementofCaOforCO
2
capture
alEngineeringJournal2003;96:187–195.
-[3]AbanadesJC,AnthonyEJ,WangJ,zedbedcombustionsystems
integratingCO
2
nmentalScienceandTechnology
2005;39:2861–6.
-[4]PrasannanPC,RamachandranPA,forgas–solid
alEngineering
Science1985;40:1251–1261.
-[5]DuoW,SevillJPsK,KirkbyNF,ionofproductlayersinsolid–gas
alEngineeringScience1994;49:4429–4442.
-[6]AbanadesJC,AlonsoM,RodríguezN,GonzálezB,GrasaG,ing
CO
2
mental
resultsandprocessdevelopment,EnergyProcedia2009;1:1147-1154.
C.-tal./EnergyProcedia4(2011)1268–12751275
本文发布于:2022-12-03 08:15:57,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/43298.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |