首页 > 试题

全导数

更新时间:2022-11-16 19:10:34 阅读: 评论:0

2018英语春季高考试题及答案-齐奋发


2022年11月16日发(作者:五二零句子幽默说说)

学习必备欢迎下载

高等数学公式

导数公式:

基本积分表:

三角函数的有理式积分:

22

2

21

2

21

1

cos

1

2

sin

u

du

dx

x

tgu

u

u

x

u

u

x, , ,

ax

x

aaa

ctgxxx

tgxxx

xctgx

xtgx

a

xx

ln

1

)(log

ln)(

csc)(csc

c)(c

csc)(

c)(

2

2

2

2

2

2

1

1

)(

1

1

)(

1

1

)(arccos

1

1

)(arcsin

x

arcctgx

x

arctgx

x

x

x

x

Caxx

ax

dx

Cshxchxdx

Cchxshxdx

C

a

a

dxa

Cxctgxdxx

Cxdxtgxx

Cctgxxdx

x

dx

Ctgxxdx

x

dx

x

x

)ln(

ln

csccsc

cc

csc

sin

c

cos

22

22

2

2

2

2

C

a

x

xa

dx

C

xa

xa

axa

dx

C

ax

ax

aax

dx

C

a

x

arctg

axa

dx

Cctgxxxdx

Ctgxxxdx

Cxctgxdx

Cxtgxdx

arcsin

ln

2

1

ln

2

1

1

csclncsc

clnc

sinln

cosln

22

22

22

22

C

a

xa

xa

x

dxxa

Caxx

a

ax

x

dxax

Caxx

a

ax

x

dxax

I

n

n

xdxxdxI

n

nn

n

arcsin

22

ln

22

)ln(

22

1

cossin

2

2222

22

2

2222

22

2

2222

2

2

0

2

0

学习必备欢迎下载

高阶导数公式——莱布尼兹(Leibniz)公式:

)()()()2()1()(

0

)()()(

!

)1()1(

!2

)1(

)(

nkknnnn

n

k

kknk

n

n

uvvu

k

knnn

vu

nn

vnuvu

vuCuv

中值定理与导数应用:

拉格朗日中值定理。时,柯西中值定理就是当

柯西中值定理:

拉格朗日中值定理:

xx

F

f

aFbF

afbf

abfafbf

)(F

)(

)(

)()(

)()(

))(()()(

定积分的近似计算:

b

a

nnn

b

a

nn

b

a

n

yyyyyyyy

n

ab

xf

yyyy

n

ab

xf

yyy

n

ab

xf

)](4)(2)[(

3

)(

])(

2

1

[)(

)()(

1312420

110

110

抛物线法:

梯形法:

矩形法:

多元函数微分法及应用

z

y

z

x

y

x

y

x

y

x

yx

F

F

y

z

F

F

x

z

zyxF

dx

dy

F

F

yF

F

xdx

yd

F

F

dx

dy

yxF

dy

y

v

dx

x

v

dvdy

y

u

dx

x

u

du

yxvvyxuu

x

v

v

z

x

u

u

z

x

z

yxvyxufz

t

v

v

z

t

u

u

z

dt

dz

tvtufz

yyxfxyxfdzz

dz

z

u

dy

y

u

dx

x

u

dudy

y

z

dx

x

z

dz

, , 隐函数

+, , 隐函数

隐函数的求导公式:

时,,当

:多元复合函数的求导法

全微分的近似计算:

全微分:

0),,(

)()(0),(

),(),(

)],(),,([

)](),([

),(),(

2

2

学习必备欢迎下载

),(

),(1

),(

),(1

),(

),(1

),(

),(1

),(

),(

0),,,(

0),,,(

yu

GF

Jy

v

vy

GF

Jy

u

xu

GF

Jx

v

vx

GF

Jx

u

GG

FF

v

G

u

G

v

F

u

F

vu

GF

J

vuyxG

vuyxF

vu

vu

隐函数方程组:

多元函数的极值及其求法:

不确定时

值时, 无极

为极小值

为极大值

时,

则:

,令:设

,0

0

),(,0

),(,0

0

),(,),(,),(0),(),(

2

2

00

00

2

BAC

BAC

yxA

yxA

BAC

CyxfByxfAyxfyxfyxf

yyxyxxyx

曲线积分:

)(

)()()()](),([),(

),(,

)(

)(

),(

22

ty

tx

dtttttfdsyxf

t

ty

tx

LLyxf

L

特殊情况:

则: 的参数方程为:上连续,在设

长的曲线积分):第一类曲线积分(对弧

学习必备欢迎下载

。,通常设

的全微分,其中:才是二元函数时,=在

:二元函数的全微分求积

注意方向相反!减去对此奇点的积分,

,应。注意奇点,如=,且内具有一阶连续偏导数在,、

是一个单连通区域;、

无关的条件:平面上曲线积分与路径

的面积:时,得到,即:当

格林公式:格林公式:

的方向角。上积分起止点处切向量

分别为和,其中系:两类曲线积分之间的关

,则:的参数方程为设

标的曲线积分):第二类曲线积分(对坐

0),(),(),(

),(

·

)0,0(),(),(2

1

·

2

1

2,

)()(

)coscos(

)}()](),([)()](),([{),(),(

)(

)(

00

),(

),(

00

yxdyyxQdxyxPyxu

yxuQdyPdx

y

P

x

Q

y

P

x

Q

GyxQyxP

G

ydxxdydxdyAD

y

P

x

Q

xQyP

QdyPdxdxdy

y

P

x

Q

QdyPdxdxdy

y

P

x

Q

L

dsQPQdyPdx

dttttQtttPdyyxQdxyxP

ty

tx

L

yx

yx

DL

DLDL

LL

L

常数项级数:

是发散的调和级数:

等差数列:

等比数列:

n

nn

n

q

q

qqq

n

n

1

3

1

2

1

1

2

)1(

321

1

1

112

级数审敛法:

学习必备欢迎下载

散。存在,则收敛;否则发

、定义法:

时,不确定

时,级数发散

时,级数收敛

,则设:

、比值审敛法:

时,不确定

时,级数发散

时,级数收敛

,则设:

别法):—根植审敛法(柯西判—、正项级数的审敛法

n

n

nn

n

n

n

n

n

n

suuus

U

U

u

lim;

3

1

1

1

lim

2

1

1

1

lim

1

21

1

。的绝对值其余项,那么级数收敛且其和如果交错级数满足

—莱布尼兹定理:—的审敛法或交错级数

11

1

3214321

,

0lim

)0,(

nnn

n

n

nn

n

urrus

u

uu

uuuuuuuu

绝对收敛与条件收敛:

时收敛

1时发散p

级数:

收敛; 级数:

收敛;发散,而调和级数:

为条件收敛级数。收敛,则称发散,而如果

收敛级数;肯定收敛,且称为绝对收敛,则如果

为任意实数;,其中

1

1

1

)1(1

)1()1()2(

)1()2(

)2(

)1(

2

321

21

p

n

p

n

nn

uuuu

uuuu

p

n

n

nn

幂级数:

学习必备欢迎下载

0

0

1

0

)3(lim

)3(

1

1

1

1

1

1

1

2

210

32

R

R

R

aa

a

a

R

Rx

Rx

Rx

R

xaxaxaa

x

x

x

xxxx

nn

n

n

n

n

n

n

时,

时,

时,

的系数,则是,,其中求收敛半径的方法:设

称为收敛半径。,其中

时不定

时发散

时收敛

,使在数轴上都收敛,则必存

收敛,也不是在全,如果它不是仅在原点 对于级数

时,发散

时,收敛于

函数展开成幂级数:

n

n

n

n

n

n

n

n

n

x

n

f

x

f

xffxfx

Rxfxx

n

f

R

xx

n

xf

xx

xf

xxxfxf

!

)0(

!2

)0(

)0()0()(0

0lim)(,)(

)!1(

)(

)(

!

)(

)(

!2

)(

))(()(

)(

2

0

1

0

)1(

0

0

)(

2

0

0

00

时即为麦克劳林公式:

充要条件是:可以展开成泰勒级数的余项:

函数展开成泰勒级数:

一些函数展开成幂级数:

)(

)!12(

)1(

!5!3

sin

)11(

!

)1()1(

!2

)1(

1)1(

12

1

53

2

x

n

xxx

xx

xx

n

nmmm

x

mm

mxx

n

n

nm

欧拉公式:

2

sin

2

cos

sincos

ixix

ixix

ix

ee

x

ee

x

xixe 或

三角级数:

。上的积分=

在任意两个不同项的乘积正交性:

。,,,其中,

0

],[cos,sin2cos,2sin,cos,sin,1

cossin

)sincos(

2

)sin()(

00

1

0

1

0

nxnxxxxx

xtAbAaaAa

nxbnxa

a

tnAAtf

nnnnnn

n

nn

n

nn

学习必备欢迎下载

傅立叶级数:

是偶函数 ,余弦级数:

是奇函数 ,正弦级数:

(相减)

(相加)

其中

,周期

nxa

a

xfnnxdxxfab

nxbxfnxdxxfba

nnxdxxfb

nnxdxxfa

nxbnxa

a

xf

nnn

nnn

n

n

n

nn

cos

2

)(2,1,0cos)(

2

0

sin)(3,2,1nsin)(

2

0

124

1

3

1

2

1

1

64

1

3

1

2

1

1

246

1

4

1

2

1

85

1

3

1

1

)3,2,1(sin)(

1

)2,1,0(cos)(

1

2)sincos(

2

)(

0

0

0

2

222

2

222

2

222

2

22

1

0

周期为l2的周期函数的傅立叶级数:

学习必备欢迎下载

l

l

n

l

l

n

n

nn

ndx

l

xn

xf

l

b

ndx

l

xn

xf

l

a

l

l

xn

b

l

xn

a

a

xf

)3,2,1(sin)(

1

)2,1,0(cos)(

1

2)sincos(

2

)(

1

0

其中

,周期

微分方程的相关概念:

即得齐次方程通解。

,代替分离变量,积分后将,,,则设

的函数,解法:,即写成程可以写成齐次方程:一阶微分方

称为隐式通解。 得:

的形式,解法:为:一阶微分方程可以化可分离变量的微分方程

或 一阶微分方程:

u

x

y

uu

du

x

dx

u

dx

du

u

dx

du

xu

dx

dy

x

y

u

x

y

yxyxf

dx

dy

CxFyGdxxfdyyg

dxxfdyyg

dyyxQdxyxPyxfy

)(

)(

),(),(

)()()()(

)()(

0),(),(),(

一阶线性微分方程:

)1,0()()(2

))((0)(

,0)(

)()(1

)()(

)(

nyxQyxP

dx

dy

eCdxexQyxQ

CeyxQ

xQyxP

dx

dy

n

dxxPdxxP

dxxP

,、贝努力方程:

时,为非齐次方程,当

为齐次方程,时当

、一阶线性微分方程:

全微分方程:

通解。应该是该全微分方程的

,,其中:

分方程,即:中左端是某函数的全微如果

Cyxu

yxQ

y

u

yxP

x

u

dyyxQdxyxPyxdu

dyyxQdxyxP

),(

),(),(0),(),(),(

0),(),(

二阶微分方程:

时为非齐次

时为齐次

0)(

0)(

)()()(

2

2

xf

xf

xfyxQ

dx

dy

xP

dx

yd

二阶常系数齐次线性微分方程及其解法:

21

22

,)(2

,,(*)0)(1

,0(*)

rr

yyyrrqprr

qpqyypy

式的两个根、求出

的系数;式中的系数及常数项恰好是,,其中、写出特征方程:

求解步骤:

为常数;,其中

学习必备欢迎下载

式的通解:出的不同情况,按下表写、根据(*),3

21

rr

的形式,

21

rr

(*)式的通解

两个不相等实根)04(2qpxrxrececy21

21

两个相等实根)04(2qpxrexccy1)(

21

一对共轭复根)04(2qp

2

4

2

2

21

pq

p

irir

)sincos(

21

xcxceyx

二阶常系数非齐次线性微分方程

为常数;型,

为常数,

]sin)(cos)([)(

)()(

,)(

xxPxxPexf

xPexf

qpxfqyypy

nl

x

m

x

本文发布于:2022-11-16 19:10:34,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/33146.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:约等号怎么打
下一篇:什么是复数
标签:全导数
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图