首页 > 试题

椭圆弦长公式

更新时间:2022-11-16 13:47:01 阅读: 评论:0

高中语文要补课怎么补-对边比邻边


2022年11月16日发(作者:托福是什么)

椭圆的焦点弦长公式62399

椭圆的焦点弦长公式

222

2

21cos

2

ca

ab

FF

及其应用

在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢?首先我们

有命题:

若椭圆的焦点弦

21

FF所在直线的倾斜角为,a、b、c分别表示椭圆的长半轴长、短

半轴长和焦半距,则有

222

2

21cos

2

ca

ab

FF

。

上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。

例1、已知椭圆的长轴长AB8,焦距

21

FF24,过椭圆的焦点

1

F作一直线交

椭圆于P、Q两点,设XPF

1



)0(,当取什么值时,PQ等于椭圆的短轴长?

分析:由题意可知PQ是椭圆的焦点弦,且4a,22c,从而22b,故由焦

点弦长公式

222

2

21cos

2

ca

ab

FF

及题设可得:24

cos816

)22(42

2

2



,解得

cos22,即

arc22cos或

arc

22cos。

例2、在直角坐标系中,已知椭圆E的一个焦点为F(3,1),相应于F的准线为Y轴,直线

l通过点F,且倾斜角为

3

,又直线l被椭圆E截得的线段的长度为

5

16

,求椭圆E的方程。

分析:由题意可设椭圆E的方程为1

)1()3(

2

2

2

2



b

y

a

cx

,又椭圆E相应于F的准线

为Y轴,故有3

2

c

c

a

(1),又由焦点弦长公式有

3

cos

2

222

2

ca

ab

5

16

(2)又

222cba(3)。解由(1)、(2)、(3)联列的方程组得:42a,32b,1c,从

而所求椭圆E的方程为1

3

)1(

4

)4(22

yx

例3、已知椭圆C:1

2

2

2

2



b

y

a

x

(0ba),直线

1

l:1

b

y

a

x

被椭圆C截得的

椭圆的焦点弦长公式62399

弦长为22,过椭圆右焦点且斜率为

3

的直线

2

l被椭圆C截得的弦长是它的长轴长的

5

2

求椭圆C的方程。

分析:由题意可知直线

1

l过椭圆C的长、短轴的两个端点,故有822ba,(1)又由

焦点弦长公式得

222

2

cos

2

ca

ab

=

5

4a

,(2)因tan=3,得

3

,(3)

又222cba(4)。解由(1)、(2)、(3)、(4)联列的方程组得:62a,22b,

从而所求椭圆E的方程为1

26

22



yx

本文发布于:2022-11-16 13:47:01,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/31647.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:浸泡的拼音
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图