首页 > 试题

二次函数顶点公式

更新时间:2022-11-16 03:24:37 阅读: 评论:0

初三寒假如何逆袭-1千瓦等于多少度电


2022年11月16日发(作者:玛莉亚台风)

初中数学二次函数顶点坐标公式的知

识点

初中数学二次函数顶点坐标公式的知识点

一、基本简介

一般地,我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数

叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变

量,y为因变量。等号右边自变量的最高次数是2。

主要特点

“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为

二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),

“变量”可在一定范围内任意取值。在方程中适用“未知数”的概念(函数方程、

微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数

――也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。

从函数的定义也可看出二者的差别.如同函数不等于函数关系。

二次函数图像与X轴交点的情况

当△=b2-4ac>0时,函数图像与x轴有两个交点。

当△=b2-4ac=0时,函数图像与x轴只有一个交点。

当△=b2-4ac<0时,函数图像与x轴没有交点。

二、二次函数图像

在平面直角坐标系中作出二次函数y=ax^2+bx+c的图像,可以看出,二次

函数的图像是一条永无止境的抛物线。如果所画图形准确无误,那么二次函数图像

将是由一般式平移得到的。

轴对称

二次函数图像是轴对称图形。对称轴为直线x=-b/2a

对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。

特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。

a,b同号,对称轴在y轴左侧.

a,b异号,对称轴在y轴右侧.

顶点

二次函数图像有一个顶点P,坐标为P(h,k)即(-b/2a,(4ac-b2/4a).

当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式

y=a(x-h)2+k。

h=-b/2a,k=(4ac-b2)/4a。

开口方向和大小

二次项系数a决定二次函数图像的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则二次函数图像的开口越小。

决定对称轴位置的因素折叠

一次项系数b和二次项系数a共同决定对称轴的位置。

当a>0,与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则

对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号

当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则

对称轴要大于0,也就是-b2a="">0,所以b/2a要小于0,所以a、b要异号

可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴

左;当a与b异号时(即ab<0),对称轴在y轴右。

事实上,b有其自身的几何意义:二次函数图像与y轴的'交点处的该二

次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导

得到。

决定与y轴交点的因素

常数项c决定二次函数图像与y轴交点。

二次函数图像与y轴交于(0,C)

注意:顶点坐标为(h,k),与y轴交于(0,C)。

与x轴交点个数

a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。

k=0时,二次函数图像与x轴只有1个交点。

a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。

当a>0时,函数在x=h处取得最小值ymin=k,在xh范围内是增函数(即

y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k

当a<0时,函数在x=h处取得最大值ymax=k,在xh范围内是减函数(即

y随x的变大而变大),二次函数图像的开口向下,函数的值域是y

当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数

三、二次函数公式汇总:交点式、两根式

一般地,自变量x和因变量y之间存在如下关系:

(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0),则称y为x的二

次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)

(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,

a≠0)。

(3)交点式(与x轴):y=a(x-x1)(x-x2)

(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交

点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.

说明:

(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛

物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0

时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在

原点。

(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程

ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a

(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-

x2)。

数学的学习并不难,重要的是找到学习的兴趣,兴趣是学习最好的老师,

是走向成功的阶梯。

本文发布于:2022-11-16 03:24:37,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/28522.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图