首页 > 试题

科学计算器分数变小数

更新时间:2022-11-15 21:51:48 阅读: 评论:0

八年级数学辅导书推荐-什么经成语


2022年11月15日发(作者:冒险岛个性名字)

实用精品文献资料分享

分数化成小数的规律

最简分数可以化成有限小数的规律

教学内容:九年义务教育六年制小学数学实验课本第十册91-92页

《分数化成有限小数的规律》

教学目标:

1、理解掌握最简分数能否化成有限小数的规律,并能运用这一规律

正确地判断一个分数能否化成有限小数;

2、让学生充分经历“猜想――验证――探索――再验证”的过程,

使学生初步感受科学研究的一般方法,训练学生思维的严谨性;

3、在“猜想――探索”的过程中,培养学生的猜想、观察、分析、

概括及表达能力和小组合作精神。

教学重点:让学生充分经历“猜想――探索”的过程,使他们得出分

数能否化成有限小数的规律。

教学难点:探究、理解一个分数能否化成有限小数。

教具学具:多媒体课件

教学过程:

一、提出问题

1、说出下列各数各有哪些不同的质因数?

122125

2、分数化成小数,一般用什么方法?

3、提出问题。

(1)、动手操作

同学们,我们已经学习了分数化小数的方法。看这里有许多分数。媒

体出示分数:

1/2、1/3、2/5、5/6、5/8、2/9、7/10、9/14、8/15、4/25、3/40、

7/30

媒体出示要求:(同桌合作)

把分数化成小数(借助计算器)

根据计算的结果分类。

(2)、反馈。

谁愿意来说一说通过计算,你们把这些分数分为几类?

实用精品文献资料分享

又是怎样分的?

在学生回答后,媒体出示分得的结果。

能化成有限小数不能化成有限小数

1/22/55/81/35/62/9

7/104/253/409/148/157/30

左边这些分数能化成有限小数,而右边这些小数却不能化成有限小数。

那么你能否一眼就看出怎么样的分数能化成有限小数,怎么样的分数

不能化成有限小数呢?

这节课我们就来研究能化成有限小数的分数的规律。

(板书课题:能化成有限小数的分数的规律)

二、大胆猜想:

这两个部分的分数有什么相同的地方?有什么不同的地方?

提出问题:仔细观察这些分数,你觉得一个分数能否化成有限小数与

什么有关?

学生可能提出一下三条:

(1)一个分数能不能化成有限小数与分数的分子有关。

(2)一个分数能不能化成有限小数与分数的分母有关。

(3)一个分数能不能化成有限小数与分数的分子、分母都有关。

三、探索规律:

第一次探索:

1、提出问题:有的同学认为一个分数能不能化成有限小数与分子有

关。你们怎样认为?

2、反馈:你们怎样认为?

学生举例说明:1/2和1/3、2/5和2/9、5/8和5/6这三组分数每一

组中分子相同,但是有的能化成有限小数,有的不能化成有限小数,

所以一个分数能不能化成有限小数与分子无关。

根据学生回答:媒体闪动一下分数1/2和1/3、2/5和2/9、5/8和

5/6,

小结:我们可以从1/2和1/3、2/5和2/9、5/8和5/6看出:一个分

数能不能化成有限小数与分子无关。

那么我提出的第三条:与分子分母都有关,正确吗?

实用精品文献资料分享

第二次探索:

1、提出问题:有的同学认为一个分数能不能化成有限小数与分母有

关。那能化成有限小数的分数的分母有什么特征?

2、小组讨论。

学生在小组讨论中可能出现以下几种情况:

(1)分母个位是0的分数都能化成有限小数。

(2)分母是分子倍数的分数能化成有限小数。

(3)分母是2和5的倍数的分数一定能化成有限小数。

(4)能化成有限小数的分数分母中只含有质因数2和5。

3、在学生小组讨论时,教师巡视并参与,引导学生运用举例的方法

进行推理。

(1)7/30分母个位是0的分数不能化成有限小数。

(2)有的同学认为:分母是2或5的倍数的分数能化成有限小数。

这个想法对吗?为什么?

学生举例说明:

5/8、7/10、4/25、3/40分母都是2或5的倍数能化成有限小数;

5/6、9/14、8/15、7/30分母都是2或5的倍数不能化成有限小数。

得出结论:“分母是2或5的倍数的分数一定能化成有限小数”是不

正确的。

(3)刚才有的同学还认为:能化成有限小数的分数分母中只含有质

因数2和5。小组讨论:这个结论对不对?为什么?

(4)反馈。

A、讨论中引导学生把这些分数的分母分解质因数。

反馈时,根据学生回答板书显示:

5/82×2×25/62×3

7/102×59/142×7

4/255×58/153×5

3/402×2×2×57/302×3×5

引导学生得出结论:如果分母中除了2和5以外,不含有其他质因数,

这个分数就能化成有限小数。

分母中含有2和5以外的质因数,这个分数就能化成有限小数。

实用精品文献资料分享

生自己找几个分母中只含有质因数2和5的分数,来验证自己的猜想。

出示:B、3/15中分母15分解质因数15=3×5,分母中有质因数3,

但把他化成小数等于0.2是一个有限小数。

讨论:这和我们刚才的结论不是矛盾了吗?为什么?

通过讨论得出:刚才我们讨论的分数都是最简分数,3/15不是最简

分数,但是化简后等于1/5,分母中不含有2和5以外的质因数,所

以能化成有限小数。

学生回答:这个分数必须是最简分数才符合这个规律。

(5)这就是能化成有限小数的分数的规律,请大家看书,把这个规

律填写完整,并轻声地读两遍。

一个()分数,如果分母中除了()和()以外,不含其他的质

因数,这个分数就能化成()小数;如果分母中含有()和()

以外的质因数,这个分数就不能化成()小数。、

三、运用规律

1、根据刚才的发现,想一想判断一个分数能不能化成有限小数要先

想什么?再想什么?同桌互相说一说。

哪位同学愿意来说一说。

学生回答:先想这个分数是不是最简分数?再想分母中是否含有2和

5以外的质因数?

2、练一练

判别下面各分数,哪些能化成有限小数,哪些不能化成有限小数?为

什么?

3/2027/1815/84/1132/258/97/283/169/40

29/1214/5

小组讨论:通过刚才的判断,你又发现了什么?

学生回答:我们只要先看它是不是最简分数,再分析分母中质因数的

情况

3、判断题。

(1)一个分数,如果分母中除了2和5以外,还含有其他的质因数,

这个分数就不能化成有限小数。()

(2)一个最简分数,如果分母中含有质因数2和5,这个分数一定

实用精品文献资料分享

能化成有限小数。()

(3)一个最简分数,如果分母有约数3,一定不能化成有限小数。()

(4)一个最简分数,如果分母有约数7,一定不能化成有限小数。()

第(1)(2)是错误的,要求学生说说是怎样想的?怎样说就对了。

四、课堂小结

回顾一下,这节课我们探索了什么?你有那些收获?

五、拓展延伸:

刚才我们探索得到了分数化小数时的一个规律。

其实在分数化小数时,还有许多规律。

观察下列各式,按规律填空。

1/2=0.5(2)1/5=0.2(5)

3/4=0.75(2×2)4/25=0.16(5×5)

7/8=0.875(2×2×2)9/125=0.072(5×5×5)

5/16能化成()位小数8/625能化成()位小数

(2×2×2×2)(5×5×5×5)

先独立思考,再小组讨论。

学生汇报时说出规律:分母中只有1个质因数2(或5)化成一位小

数,只有2个质因数(2或5)化成两位小数,……只有4个质因数

2(或5)所以能化成四位小数。

因为5/16分母中有4个质因数2,所以它能化成四位小数

因为8/125分母中有4个质因数5,所以它能化成四位小数。

用计算器算一算对吗?

学生通过计算器证明答案是正确的。

教师小结:在数学王国中还有许许多多的规律,我们只要认真学习,

不断探索,一定能发现更多更有趣的规律。

本文发布于:2022-11-15 21:51:48,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/26918.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:干燥氨气
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图