首页 > 试题

单摆回复力

更新时间:2022-11-12 05:29:49 阅读: 评论:0

浙江比较有名的教育机构-形容生意兴隆的词语


2022年11月12日发(作者:跨年祝福语简短)

城东蜊市阳光实验学校单

摆·教案

一、教学目的

1.在物理知识方面的要求:

(1)理解单摆振动的特点及它做简谐运动的条件;

(2)掌握单摆振动的周期公式。

2.观察演示实验,概括出周期的影响因素,培养学生由实验现象得出物理结论的

才能。

3.在做演示实验之前,可先提出疑问,引起学生对实验的兴趣,让学生先猜想实

验结果,由教师实验验证,使学生能更好的有目的去观察实验。

二、重点、难点分析

1.本课重点在于掌握好单摆的周期公式及其成立条件。

2.本课难点在于单摆回复力的分析。

解决方案:对于重点内容通过课堂稳固练习加深印象。本课难点在于力的分析上,

由教师画好受力分析图,用彩粉笔标示,同时引导学生看书,这部分内容属于A类要求

及理解内容,只要使大部分学生能明白根本过程即可,重在强调最后结论。

三、教具

1.演示单摆振动周期的影响因素

三个单摆:两个摆长一样,质量不同;两个摆长不同。

2.投影仪,投影片。(内容见附录)

四、主要教学过程

(一)引入新课

提问:什么是简谐运动?

答:物体做机械振动,受到的回复力大小与位移大小成正比,方向与位移方向相

反。

前节课我们学习了弹簧振子,理解了简谐运动和振动周期。日常生活中,我们常

常见到钟表店里摆钟摆锤的振动(教师展示摆钟钟摆的振动),这种振动有什么特点呢?

它是根据什么原理制成的?钟摆类似于物理上的一种理想模型——单摆。我们就来分析

一下单摆来解决以上的问题。

(二)教学过程设计

(教师拿出单摆展示,同时介绍单摆构成)这就是单摆,一根绳子上端固定,下端

系着一个球。物理上的单摆,是在一个固定的悬点下,用一根不可伸长的细绳,系住一

个一定质量的质点,在竖直平面内小角度地摆动。所以,实际的单摆要求绳子轻而长,

小球要小而重,将摆球拉到某一高度由静止释放,单摆振动类似于钟摆振动。我们这一

章研究的是机械振动,而单摆振动也属于机械振动,单摆振动也是在某一平衡位置附近

来回振动,这个平衡位置,就是绳子处于竖直的位置。

我们在学习机械振动时,曾经提到过机械振动的两个必要条件,一是运动中物体

所受阻力要足够小;二是物体离衡位置后,总是受到回复力的作用。对于第一个条件单

摆是符合的,单摆绳要轻而长,球要小而重都是为了减少阻力;第二个条件说到回复力。

提问:单摆的回复力又由谁来提供?

答:单摆的回复力由绳的拉力和重力的合力来提供。(教师对答案先不否认,通过

对学生的提问,教师把受力图画在黑板上。)

1.单摆的回复力

要分析单摆回复力,先从单摆受力入手。单摆从A位置释放,沿AOB圆弧在平衡

点O附近来回运动,以任一位置C为例,此时摆球受重力G,拉力T作用,由于摆球沿

圆弧运动,所以将重力分解成切线方向分力G1和沿半径方向G2,悬线拉力T和G2合力

必然沿半径指向圆心,提供了向心力。那么另一重力分力G1不管是在O左侧还是右侧

始终指向平衡位置,而且正是在G1作用下摆球才能回到平衡位置。(此处可以再复习平

衡位置与回复力的关系:平衡位置是回复力为零的位置。)因此G1就是摆球的回复力。

回复力怎么表示?由单摆的回复力的表达式能否看出单摆的振动是简谐运动?书上已

给出了详细的推导过程,其中用到了两个近似:(1)sinα≈α;(2)在小角度下AO直线

与AO弧线近似相等。这两个近似成立的条件是摆角很小,α<5°。(见附表,打印在

投影片上。)由投影片我们可知α在5°之内,并且以弧度为角度单位,sinα≈α。

在分析了推导过程后,给出结论:α<5°的情况下,单摆的回复力为

满足简谐运动的条件,即物体在大小与位移大小成正比,方向与位移方向相反的

回复力作用下的振动,为简谐运动。所以,当α<5°时,单摆振动是一种简谐运动。

2.单摆振动是简谐运动

特征:回复力大小与位移大小成正比,方向与位移方向相反。

但这个回复力的得到并不是无条件的,一定是在摆角α<5°时,单摆振动回复力

才具有这个特征。这也就是单摆振动是简谐运动的条件。

条件:摆角α<5°。

前面我们所学简谐运动是以弹簧振子系统为例,单摆振动和弹簧振子不同,从回

复力上说,虽然都具有同一特征,却由不同的力来提供。弹簧振子回复力由合力提供,

而单摆那么是由重力的一个分力来提供回复力。这是回复力不同,那么其他方面,还有

没有不同呢?我们在学习弹簧振子做简谐运动时,还提到过弹簧振子系统周期与振幅无

关,那么单摆的周期和振幅有没有关系呢?下面我们做个实验来看一看。

3.单摆的周期

要研究周期和振幅有没有关系,其他条件就应不变。这里有两个单摆(展示单摆),

摆长一样,摆球质量不同,这会不会影响实验结果呢?也就是单摆的周期和摆球的质量

有没有关?那么就先来看一下质量不同,摆长和振幅一样,单摆振动周期是不是一样。

[演示1]将摆长一样,质量不同的摆球拉到同一高度释放。

现象:两摆球摆动是同步的,即说明单摆的周期与摆球质量无关,不会受影响。

那么就可以用这两个单摆去研究周期和振幅的关系了,在做之前还要明确一点,

振幅是不是可任意取?这个实验主要是为研究属于简谐运动的单摆振动的周期,所以摆

角不要超过5°。

[演示2]摆角小于5°的情况下,把两个摆球从不同高度释放。

现象:摆球同步振动,说明单摆振动的周期和振幅无关。

刚刚做过的两个演示实验,证实了单摆振动周期和摆球质量、振幅无关,那么周

期和什么有关?由前所说这两个摆摆长相等,假设L不等,改变了这个条件会不会影响

周期?

[演示3]取摆长不同,两个摆球从某一高度同时释放,注意要α<5°。

现象:两摆振动不同步,而且摆长越长,振动就越慢。这说明单摆振动和摆长有

关。详细有什么关系呢?经过一系列的理论推导和证明得到:

同时这个公式的提出,也是在单摆振动是简谐运动的前提下,即满足摆角α<5°。

条件:摆角α<5°

还可以根据这个周期公式测某地的重力加速度,由公式可知只要测出单摆的摆长、

周期,就可以得到单摆所在地的重力加速度。

提问:由以上演示实验和周期公式,我们可知道周期与哪些因素有关,与哪些因

素无关?

答:周期与摆长和重力加速度有关,而与振幅和质量无关。

单摆周期的这种与振幅无关的性质,叫做等时性。单摆的等时性是由伽利略首先

发现的。(此处可以讲一下伽利略发现单摆等时性的小故事。)钟摆的摆动就具有这种性

质,摆钟也是根据这个原理制成的,据说这种等时性最早是由伽利略从教堂的灯的摆动

发现的。假设条件改变了,比方说(拿出摆钟展示)这个钟走得慢了,那么就要把摆长调

整一下,应缩短L,使T减小;假设这个钟在走得好好的,带到去会怎么样?由于g,

小于的g值,所以T变大,钟也会走慢;同样,把钟带到月球上钟也会变慢。

4.课堂练习(见投影片)

[题目]甲乙两个单摆,甲的摆长是乙摆长的4倍,乙摆球质量是甲球质量的2倍。

在甲振动5次的时间是是内,乙摆球振动______次。

分析:此题考察的是周期的影响因素。摆长和质量比例关系,但由周期公式和前

面所做演示实验可知,周期与质量无关,甲的摆长是乙的摆长的4倍,那么甲的周期就

是乙的周期的2倍,频率是1/2,所以甲振动5次,同时乙振动10次。

(三)课堂小结

本节课主要讲了单摆振动的规律,只有在小角度时单摆振动才能近

式测某地的重力加速度,由公式可知只要测出单摆的摆长、周期,就可以得到单

摆所在地的重力加速度。

本文发布于:2022-11-12 05:29:49,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/2614.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:至于英语
下一篇:声速是多少
标签:单摆回复力
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图