首页 > 试题

三角函数半角公式

更新时间:2022-11-14 20:29:30 阅读: 评论:0

生活需要梦想作文素材-六一居士是谁的别号


2022年11月14日发(作者:欧洲最大的半岛在哪里)

DOC格式.

三角函数公式大全

三角函数定义

锐角三角函数任意角三角函数

图形

角三角形

意角三角函数

正弦(sin)

余弦(cos)

正切(tan或

tg)

余切(cot或

ctg)

正割(c)

余割(csc)

函数关系

倒数关系:

商数关系:

平方关系:

诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等:

DOC格式.

公式二:设为任意角,与的三角函数值之间的关系:

公式三:任意角与的三角函数值之间的关系:

公式四:与的三角函数值之间的关系:

公式五:与的三角函数值之间的关系:

公式六:及与的三角函数值之间的关系:

DOC格式.

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变

正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。

诱导公式口诀“奇变偶不变,符号看象限”意义:

k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时

原三角函数值的符号;

(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

记忆方法一:奇变偶不变,符号看象限:

其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切

------------------奇变偶不变

根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限

记忆方法二:无论α是多大的角,都将α看成锐角.

以诱导公式二为例:

若将α看成锐角(终边在第一象限),则π十α是第三象限的角

(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的

函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,

就得到了诱导公式二.

以诱导公式四为例:

若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终

边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的

三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负

值.这样,就得到了诱导公式四.

诱导公式的应用:运用诱导公式转化三角函数的一般步骤:

特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角

的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要

最少,次数要最低,函数名最少,分母能最简,易求值最好。

DOC格式.

基本公式

和差角公式

二角和差公式

证明如图,负号的情况只需要用-β代替β即可.cot(α+β)推导只需把角α对边设为1,过程与tan(α+β)

相同.

DOC格式.

三角和公式

和差化积

口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.

积化和差

倍角公式

二倍角公式

DOC格式.

三倍角公式

证明:

sin3a

=sin(a+2a)

=sin^2a·cosa+cos^2a·sina

=2sina(1-sin^2a)+(1-2sin^2a)sina

=3sina-4sin^3a

cos3a

=cos(2a+a)

=cos^2acosa-sin^2asina

=(2cos^2a-1)cosa-2(1-cos^2a)cosa

=4cos^3a-3cosa

sin3a

=3sina-4sin^3a

=4sina(3/4-sin^2a)

=4sina[(√3/2)-sina][(√3/2)+sina]

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[60°+a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a

=4cos^3a-3cosa

=4cosa(cos^2a-3/4)

=4cosa[cos^2a-(√3/2)^2]

=4cosa(cosa-cos30°)(cosa+cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述两式相比可得:

tan3a=tana·tan(60°-a)·tan(60°+a)

四倍角公式

sin4a=-4*[cosa*sina*(2*sina^2-1)]

cos4a=1+(-8*cosa^2+8*cosa^4)

tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)

DOC格式.

五倍角公式

n倍角公式

应用欧拉公式:

.

上式用于求n倍角的三角函数时,可变形为:

所以,

其中,Re表示取实数部分,Im表示取虚数部分.而

所以,

n倍角的三角函数

DOC格式.

半角公式

(正负由所在的象限决定)

万能公式

DOC格式.

辅助角公式

证明:

由于

,显然,且

故有:

三角形定理

正弦定理

在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R.则有:

正弦定理变形可得:

余弦定理

同理,也可描述为:

DOC格式.

勾股定理是余弦定理的特例。

当为时,,余弦定理可简化为

,即勾股定理。

本文发布于:2022-11-14 20:29:30,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/19829.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:飞机拼音
下一篇:丌怎么读
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图