首页 > 试题

三角形三个角之和

更新时间:2022-11-14 20:28:00 阅读: 评论:0

哪里有免费的试卷可以打印-一到十的繁体字


2022年11月14日发(作者:雪豹)

--

-.-总结-

三角形三边关系、三角形角和定理

三角形边的性质

(1)三角形三边关系定理及推论

定理:三角形两边的和大于第三边。

推论:三角形两边的差小于第三边。

(2)表达式:△ABC中,设a>b>c

则b-c<a<b+c

a-c<b<a+c

a-b<c<a+b

(3)应用

1、给出三条线段的长度,判断它们能否构成三角形。

方法(设a、b、c为三边的长)

①若a+b>c,a+c>b,b+c>a都成立,则以a、b、c为三边的长可构成三角形;

②若c为最长边且a+b>c,则以a、b、c为三边的长可构成三角形;

③若c为最短边且c>|a-b|,则以a、b、c为三边的长可构成三角形。

2、已知三角形两边长为a、b,求第三边x的围:|a-b|<x<a+b。

3、已知三角形两边长为a、b(a>b),求周长L的围:2a<L<2(a+b)。

4、证明线段之间的不等关系。

复习巩固,引入新课

1画出下列三角形是高

2、已知:如图△ABC中AG是BC中线,AB=5cmAC=3cm,

则△ABG和△ACG的周长的差为多少?△ABG和△ACG的

面积有何关系?

3、三角形的角平分线、中线、高线都是()

A、直线B、线段C、射线D、以上都不对

4、三角形三条高的交点一定在()

A、三角形的部B、三角形的外部

C、顶点上D、以上三种情况都有可能

5、直角三角形中高线的条数是()

A、3B、2C、1D、0

6、判断:

A

B

C

D

E

F

A

BCG

c

a

b

A

B

C

--

-.-总结-

(1)有理数可分为正数和负数。

(2)有理数可分为正有理数、正分数、负有理数和负分数。

7、现有10cm的线段三条,15cm的线段一条,20cm的线段一条,将它们任意组合可以

得到几种不同形状的三角形?

三角形三边的关系

一、三角形按边分类(见同步辅导二)

练习

1、两种分类方法是否正确:

不等边三角形不等三角形

三角形三角形等腰三角形

等腰三角形等边三角形

2、如图,从家A上学时要走近路到学校B,你会选哪条路线?

3、下列各组里的三条线段组成什么形状的三角形?

(1)3cm4cm6cm(2)4cm4cm6cm

(3)7cm7cm7cm(4)3cm3cm7cm

应用举例1

已知△ABC中,a=6,b=14,则c边的围是

练习

1、三角形的两边为3cm和5cm,则第三边x的围是

2、果三角形的两边长分别为7和2,且它的周长为偶数,那么第三边的长为

3、长度分别为12cm,10cm,5cm,4cm的四条线段任选三条线段组成三角形的个

数为()

A、1B、2C、3D、4

4、具备下列长度的各组线段中能够成三角形的是()

A、5,9,3B、5,7,3C、5,2,3D、5,8,3

应用举例2

1、已知一个等腰三角形的两边分别是8cm和6cm,则它的周长是

______cm。

分析:若这个等腰三角形的腰长为8cm,则三边分别为8cm,8cm,6cm,

满足两边之和大于第三边,若腰长为7cm,则三边分别为6cm,6cm,8cm,

也成立。

解:这个等腰三角形的周长为22cm或20cm。

2、已知:△ABC的周长为11,AB=4,CM是△ABC的

中线,△BCM的周长比△ACM的周长大3,求BC和AC

的长。

C

B

A

D

E

F

--

-.-总结-

分析:由已知△ABC的周长=AB+AC+BC=11,AB=4,可得BC+AC=7。

又△BCM的周长-△ACM的周长=(BC+CM+MB)-(AC+CM+MA)=3,而

AM=MB,故BC-AC=3,解方程组可求BC与AC的长。

略解:∵△ABC的周长=AB+BC+CA=11,AB=4

∴BC+AC=11-4=7

又CM是△ABC的中线(已知)

∴AM=MB(三角形中线定义)

又△BCM的周长-△ACM的周长=(BC+CM+MB)-(AC+CM+MA)=BC-AC=3

解得:BC=5AC=2

专题检测

1、1.指出下列每组线段能否组成三角形图形

(1)a=5,b=4,c=3(2)a=7,b=2,c=4

(3)a=6,b=6,c=12(4)a=5,b=5,c=6

2.已知等腰三角形的两边长分别为11cm和5cm,求它的周长。

3.已知等腰三角形的底边长为8cm,一腰的中线把三角形的周长分为两

部分,其中一部分比另一部分长2cm,求这个三角形的腰长。

4、三角形三边为3,5,a,则a的围是。

5、三角形两边长分别为25cm和10cm,第三条边与其中一边的长相等,则第三边长

为。

6、等腰三角形的周长为14,其中一边长为3,则腰长为

7、一个三角形周长为27cm,三边长比为2∶3∶4,则最长边比最短边长。

8、等腰三角形两边为5cm和12cm,则周长为。

9、已知:等腰三角形的底边长为6cm,那么其腰长的围是

10、已知:一个三角形两边分别为4和7,则第三边上的中线的围是

11、下列条件中能组成三角形的是()

A、5cm,7cm,13cmB、3cm,5cm,9cm

C、6cm,9cm,14cmD、5cm,6cm,11cm

12、等腰三角形的周长为16,且边长为整数,则腰与底边分别为()

A、5,6B、6,4C、7,2D、以上三种情况都有可能

13、一个三角形两边分别为3和7,第三边为偶数,第三边长为()

A、4,6B、4,6,8C、6,8D、6,8,10

14、已知等腰三角形一边长为24cm,腰长是底边的2倍。

求这个三角形的周长。

三角形角的性质

--

-.-总结-

(1)三角形角和定理

1)定理:三角形三个角的和等于180°。

2)表达式:△ABC中

∠A+∠B+∠C=180°(三角形角和定理)

(2)三角形角和定理及推论的作用

1)在三角形中,利用三角形角和定理,已知两角求第三角或已知各角之间的关系求

各角。

2)在直角三角形中,已知一个锐角利用推论1求另一个锐角或已知两个锐角的关系,

求这两个锐角。另外,推论1常与同角(等角)的余角相等结合来证角相等。

3)利用推论3证三角形中角的不等关系。

4)、三角形具有稳定性,而四边形具有不稳定性。

(3)三角形按角分类

说明:

三角形有两种分类方法,一种是按边分类,另一种是按角分类,两种分

类方法分辩清楚。

复习巩固,引入新课

1、三角形的两边为7cm和5cm,则第三边x的围是

2、如果三角形的两边长分别为7和2,且它的周长为偶数,那么第三边的长为

3、已知一个等腰三角形的两边分别是8cm和6cm,则它

的周长是______cm。

4、下列条件中能组成三角形的是()

A、5cm,7cm,13cmB、3cm,5cm,9cm

C、6cm,9cm,14cmD、5cm,6cm,11cm

三角形三个角的关系

三角形三个角的和等于180°

证明思路:通过添加辅助线,把三角形三个分散的角,

全部或适当地集中起来,利用平角定义或两直线平行,同旁

角互补来证明。

下面是几种辅助线的添置方法,请同学们自己分析证

明。

1、作BC的延长线CD,在△ABC的外部,以

CA为一边,CE为另一边,画∠1=∠A。

2、作BC的延长线CD,过C点作CE∥AB。

3、过A点作DE∥BC。

4、过A点作射线AD∥BC。

5、在BC上任取点D,过D作DE∥AC交AB于E,DF∥AB交AC于F。

A

B

C

1

E

A

B

C

D

E

A

B

C

D

A

B

C

D

E

F

--

-.-总结-

(2)三角形角和定理的推论

推论1:直角三角形的两个锐角互余。

表达式:∵在Rt△ACB中,∠C=90°(已知)

∴∠A+∠B=90°(直角三角形的两个锐角互余)

推论2:三角形的一个外角等于和它不相邻的两个角的和。

推论3:三角形的一个外角大于任何一个和它不相邻的角。

表达式:△ACB中,∠ACD=∠A+∠B∠ACD>∠A,∠ACD>

∠B

练习

1、三角形的三个角中最多有个锐角,最多有个直

角,个钝角。

2、一个三角形的最大角不能超过度,最小角不能大于

度。

3、已知△ABC

①若∠A=50°,∠B=60°,则∠C=。

②若∠A=50°,∠B=∠C,则∠C=,∠B=。

③若∠A=50°,∠B-∠C=10°,则∠B=,∠C=。

④若∠A+∠B=130°,∠A-∠C=25°,则∠A=,∠B=,∠C=。

⑤若∠A∶∠B∶∠C=1∶2∶3,则∠A=,∠B=,

∠C=,这个三角形是三角形。

例题讲解已知:如图02-13△ABC中,∠C=90°,∠BAC,∠ABC的

平分线AD、BE交于点O,求:∠AOB的度数。

解二:同上可得到∠1+∠2=45°

∴∠3=∠1+∠2=45°(三角形外角等于和它不相邻的两个角和)

B

C

A

A

B

C

D

--

-.-总结-

∵∠AOB+∠3=180°(平角定义)

∴∠AOB=180°-∠3=180°-45°=135°

∴∠AOB=135°

例2.AB与CD相交于点O,求证:∠A+∠C=∠B+∠D

思路分析:在△AOC中,

∠A+∠C+∠AOC=180°(三角形角定理)

在△BOD中,∠B+∠D+∠BOD=180°(三角形角和定理)

∴∠A+∠C+∠AOC=∠B+∠D+∠BOD(等量代换)

∵∠AOC=∠BOD(对顶角相等)

∴∠A+∠C=∠B+∠D

这道几何题是一对对顶三角形组成的几何图形.因为我们发现了两个三角形,所以便

联想到三角形角和定理,探索思路,使问题解决了.可是这道题的应用价值很值得开发,

它是一类几何题打开思路的“桥梁”,借助它可顺利到达“彼岸”,请看实例.

变式:如图,∠A+∠B+∠C+∠D+∠E=.

揭示思路:从图形中观察出现对顶三角形,此时便使我们设法把5个分散的角转化在

一个图形中,在这种想法趋使下,使我们想到对顶三角形这“桥梁”.

结合图形,连CD,立即可发现,∠B+∠E=∠1+∠2

∴∠A+∠B+∠C+∠D+∠E

=∠A+∠ACD+∠ADC=180°(三角形角和定理)

专题检测1、直角三角形的两个锐角相等,则每一个锐角等于度。

2、△ABC中,∠A=∠B+∠C,这个三角形是三角形。

3、国旗上的五角星中,五个锐角的和等于度。

4、在△ABC中(1)已知:∠A=32.5°,∠B=84.2°,求∠C的度数。

(2)已知:∠A=50°,∠B比∠C小15°,求∠B的度数。

(3)已知:∠C=2∠B,∠B比∠A大20°,求∠A、∠B、∠C的度数。

5、已知,在△ABC中与最大的角相邻的外角是120°,则这个三角形一定是()

A、不等边三角形B、钝角三角形C、等边三角形D、等腰直角三角形

6、、△ABC中,∠B=∠C=50°,AD平分∠BAC,则∠BAD=

7、、在△ABC中,∠A是∠B的2倍,∠C比∠A+∠B还大30°,则∠C的外角为度,

这个三角形是三角形

8、、△ABC中,∠A=40°,∠B=60°,则与∠C相邻的外角等于

9、、△ABC中,∠A∶∠B∶∠C=1∶2∶3,则∠B=()

A、30°B、60°C、90°D、120°

10、一个三角形有一外角是88°,这个三角形是()

A、锐角三角形B、直角三角形C、钝角三角形D、无法确定

11、已知△ABC中,∠A为锐角,则△ABC是()

A、锐角三角形B、直角三角形C、钝角三角形D、无法确定

12、已知三角形的一个外角小于与它相邻的角,那么这个三角形()

A、是锐角三角形B、是直角三角形C、是钝角三角形D、以上三种都有可能

本文发布于:2022-11-14 20:28:00,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/19823.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图