计算标准差的步骤通常有四步:
计算平均值、计算方差、计算平均方差、计算标准差。
例如,对于一个有六个数的数集2,3,4,5,6,8,其标准差可通过以下
步骤计算:
1.计算平均值:
(2+3+4+5+6+8)/6=30/6=5
2.计算方差:
(2–5)^2=(-3)^2=9
(3–5)^2=(-2)^2=4(
4–5)^2=(-1)^2=0
(5–5)^2=0^2=0
(6–5)^2=1^2=1
(8–5)^2=3^2=9
3.计算平均方差:
(9+4+0+0+1+9)/6=24/6=4
4.计算标准差:
√4=2
标准差(StandardDeviation),在概率统计中最常使用作为统计
分布程度(statisticaldispersion)上的测量。标准差定义为方差
的算术平方根,反映组内个体间的离散程度。测量到分布程度的结
果,原则上具有两种性质:一个总量的标准差或一个随机变量的标
准差,及一个子集合样品数的标准差之间,有所差别。其公式如下
所列。标准差的观念是由卡尔·皮尔逊(KarlPearson)引入到统计
中。
例子:
1,2,3,4,5,6,7,8,9
均值为5
每个数字减去均值
-4,-3,-2,-1,0,1,2,3,4
平方
16,9,4,1,0,1,4,9,16
求和
16+9+4+1+0+1+4+9+16=60
一共有9项,所以(最重要的一步)
60/(9-1)=7.5
标准差就是根号7.5
本文发布于:2022-11-14 18:09:21,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/19112.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |