Anewgaitparameterizationtechniquebymeansof
cyclogrammoments:
Applicationtohumanslopewalking
AmbarishGoswami
INRIARhˆone-Alpes
655avenuedel’Europe,ZIRST
38330MontbonnotSaintMartin,France
*****************************
Appearedin
Gait&Posture
August1998
Abstract
Anewparameterizationtechniqueforthesystematiccharacterizationofhumanwalkinggaitindiver
meterizationwemeanaquantitativeexpressionofcer-
taingaitdescriptorsasthefunctionofanexternalparameter,hematical
quantitiesderivedfromthegeometricfeaturesofthehip-kneecyclogramsarethemaingaitdescriptorscon-
nstratethatthedescriptors,expresdinageneralttingasthegeometric
momentsofthecyclogramcontours,canmeaningfullyreflecttheevolutionofthegaitkinematicsondifferent
ideanewinterpretationofthecyclogramperimeteranddiscovertwopotentialinvariantsof
mentalslope-walkingdataobtainedat
intervalwithintherangeofto
()onavariable-inclinationtreadmillwasudinthisstudy.
Theparameterizationprocedureprentedhereisgeneralinnatureandmaybeemployedwithoutrestric-
tiontoanyclodcurvesuchasthephadiagram,themoment-anglediagram,andthevelocity-velocity
hniquemaybeutilizedforthequantitativecharacterizationofnormalgait,
globalcomparisonoftwodifferentgaits,clinicalidentificationofpathologicalconditionsandforthetracking
ofprogressofpatientsunderrehabilitationprogram.
Keywords:gaitparameterization,slopewalking,cyclogram,geometricmoments,gaitkinematics,invariants
GoswamiGaitparameterization...
1Introduction
MotivationCharacterizationofhumangaitinaquantitativeandobjectivemannerhasmanypotentialben-
efitsinclinicaldiagnosisandrehabilitationaswellasintheenhancementofourbasicunderstandingofthe
eoftheimpressivesophisticationofourprentdaydatacollectionsys-
tems,communicabledescriptionsofcertaingaitconditionsremainsurprisinglydiffierdescribing
theprogressofapatient’lde-
scriptionofthejoint’skinem
isneededisacomprehensiveglobalpictureoranobjectivecaptureofinformation[40]whichmaybesubjected
toquantitativeanalysis.
Acondexample,whichweaddressinthisarticle,istheevolutionofthewalkinggaitinrespontoa
aitstudyliteraturethisisknownasslope-walking,grade-walkingand
edsurfacesarefrequentlyencounteredintheeverydaylifebuttheireffectonthegaitis
slopemodifiestheinfluenceofgravityonthehumanbody,whichisknown
lstudyofhumanlocomotion,ascanbe
eninthesimplifiedsketchofFig.1,revealsthatourgaitpatternschangeconsiderably,morethanisnecessary
teanidealsituationwhere
wehaveacompactmathematicaldescriptionwhichassignsagaitpatternnumber,say
,forthegaiton
roundslopechanges,thisnumberalsochangesrefl
powerfultoolwouldhaveveralpracticalussuchastheobjectivecharacterizationofnormalgait,global
comparisonoftwodifferentgaits,clinicalidentificationofpathologicalconditionsandthetrackingofprogress
ofpatientsunderrehabilitationprograms.
eginningofthelastdecade[44,51]udtheso-called
chain-encodingmethod[17],acomputerizedprocessingtechniqueoflinedrawings,tocorrelatetheshapes
metriccongruityofany
twoshapepatternswasconsistentlyreflectedbytheircross-correlationcoeffighthechain-code
reprentationofcontoursifficientforcomputerprocessingandufulfordeterminingthecross-correlation
coefficients,theyare,however,abstractnumbersanddonotgiveanyphysicalinsightintotheactualshapeof
thepatternsunderstudy.
ectiveofthispaperistointroduceageneralandphysi-
callyintuitivesystemoryto
thesimplisticsituationportrayedinFig.1,inreality,giventhecomplexityofthehumangait,wewouldneed
tidimensionalspacesuchquantitiescanbereprented
entgaitsarereprentedbydifferentpointsandtheevolutionof
agaitcanbecharacterizedbyalocusofpointsinthatspace.
Fromadynamicsystemspointofviewacompletetof“statevariables”uniquelydescribeasystem[36].
Forexample,thejointangleandthejointvelocityconstitutethestatevariablesofasimplependulumandcan
ghthelevelofourcurrentknowledgedoesnotpermitustoarch
forthecompletetofstatevariablesofthecomplexdynamicscalledthehumanlocomotion,weneverthe-
lesxtractsomemeasurable,
gaitdescriptorsmayreflectthechangesingaitpatterninrespontosomeexternallycontrollablefactoror
yspeaking,aparameterisanimpodconditionandadescriptoristheresultofthesystem’s
esofsomecommonlyudgaitdescriptorsarethesteplength,
stepfrequency,eter,ontheotherhand,couldbethe
Figure1:Asimplifiedsketchshowingthetypicalwalkingpatternsondifferentinclinationsandtheirquantification.
2
GoswamiGaitparameterization...
weightofloadcarried,oraswestudyhere,thegroundslope1.
Byparameterizationwerefertothesystematicandobjectivedescriptionoftheevolutionofacertaingaitdescriptor
pleofthiswillbeacurveoramathematicalexpressionrelatingtheload
urrentstudy,thegroundslopehasbeenconsideredasthe
onlyparameterandthegaitdescriptorsareobtainedfromthegeometricfeaturesofthecyclograms[20],the
rationalebehindthechoicesbeinggiveninthefollowing.
ScopeofthisworkThegoalofthispaperistointroduceacoherent,meaningful,andefficienttechnique
ntedmethodisbaduponthegeometricmomentsof
ampleoftheapplicationofthistechniquewehaveconsiderednatural
dliketoemphasizethatthechoiceofthis
particularexampleismotivatedbyourownrearchinterests(e“Motivationfromrobotics”below)and
therelativefamiliarityofcyclogramsinthebiomechanicscommunityandhasnospecialconnectionwiththe
parameterizationmethod.
Infact,themoment-badparameterizationmethodcanbedirectlyappliednotonlytothecyclogramsof
otherrepetitiveactivitiesbutequallytootherreprentations(suchasthephadiagram[30],themoment-
anglediagram[18],andthevelocity-velocitycurves[51])ofrepetitiveactivities.
Whystudycyclograms?
simplypointoutthatalthoughmostofthemeasurablevariablesofthehumangaitrespondtoaparameter
change,andparameterizationmaybeperformed,inprinciple,withanyofthevariables,analysisbadon
nreasonforthisisthefactthatthe
clodtrajectoriesreprentformsorshapesthatprovideuswithimportantinsightsintothesystem[8,23]and
aredescribablebyappropriategeometricproperties[25,24].Wewilleinthefollowingthatastheground
slopegraduallychanges,thehip-kneecyclogram,obtainedbyplottingthehipangleversusthekneeangle
andbyomittingthetimevariablesfromthetwosignals,changesitsformgivingusaclearindicationofthe
modifier,cyclogramsreflectthegaitkinematicsduringthe
totalgaitcyclewhichisdifferentfromhavingotherdiscretemeasuressuchasthesteplength,orwalking
speed,whicharemorecommonintheliterature[35,53,52].Afurtherjustificationforchoosingcyclograms
overtime-angleplotsisthefactthatlocomotion,atightlycoordinatedmovementofverallimbgmentsis
morenaturallygraspedasthecoupledevolutionoftwoormorejointsratherthanfromthestudyofindividual
jointkinematics[8].
Whymoment-badshapecharacterization?Onecanimagineanumberofquantitiessuchasthe
perimeterandthearea,thatrefliceofmoment-badchar-
acterizationofthecyclogramfeaturesisjustifiedbythefactthatmoments(ofdifferentorders)canbeviewed
oment-badscheme,thecy-
clogramperimeteristhezeroth-ordermoment,thepositionofits“centerofmass”(CM)isacombinationof
thezeroth-orderandthefirlythehigherordermomentsreflectotherfeatures.
MotivationfromroboticsBeforeleavingthisctionweshouldmentionanothersourceofmotivation
thatguidemsfromour
challengeofformulatingacontrollawforabipedrobotwalkingondifferentinclinations[15].Acontrol
lawgeneheassumption
thatabiologicalsystemifficientoroptimalinsomen,weintendtoidentify“biologically”motivated
optimalitycriteriaoratleast,tomimichumanlocomotionwiththehopethattherobotwillbeendowedwith
ssiblethattheentiredynamicsofacomplicatedsystemcanbegenerated
fromasmalltofinflobrved
thatinsimplifiedpassivebipedrobotmodelsthegroundslopecompletelyspecifiesthedynamics[21].Our
long-termobjectiveistofindtheprinciplesbehindsuchhighlyorganizedmotionsandtoemploythemasthe
controllaws.
StructureofthispaperThestructureofthepaperisasfollows:Sections2and3providethebackgroundof
ribestheconstructionandinterpretation
ofcyclogramn3consists
prenttheexperimentalprotocolforthegait
1Somequantities,suchasstepfrequencyandwalkingspeedcanbeeitherdescriptorsorparameters(whenimpodbyametronome
andatreadmill,respectively)iteraturegaitdescriptorsandparametersaresometimecalledthe
dependentvariablesandtheindependentvariables,respectively.
3
GoswamiGaitparameterization...
hip
t
r
u
n
k
knee
ankle
s
h
a
n
k
t
h
i
g
h
f
o
o
t
Figure2:Astchalsoshowstypicalmarker
positionsonthelimbgmentswhicharerecordedwithacamerasystem.
dataudinthisworkandanoverallsnapshotoftheresults(Figs6and3.3).Section4formsthecoreofthis
ereportthetechniquesadoptedinthispaperforthecomputationofgeneralizedmomentsofthe
cyclograms(Section4.1)andthenapplythetechniquestocalculatevariousfeaturesofthegaitcyclogramsas
theyevolveasafunctionofthegroundslope(Section4.2).FinallySection5drawstheconclusionsandpoints
outsomeoftheopenquestions.
2Cyclogramsrevisited
Theconceptofcyclograms2,althoughknowntothebiomechanicscommunity,hasnotbeenenveryfre-
ewinthisctionhowtoconstructacyclogram,howto
interpretatypicalcyclogramoflevelwalkinggait,andprovidesomehighlightsofthehistoricaldevelopments
ofcyclograms.
2.1Whatarecyclogramsandhowtoconstructone?
Commonlyhumangaitdataconsistoftherecordedpositionsofretro-reflectivemarkerstapedontheskinat
theextremitiesofthelimbgments(thethigh,theshanketc.)lesbetweeneachtwo
gmentsaresu.2showsa
sketchoftheright
thehipangleandthekneeangle,respectively.
Fig.3(a)and3(b)showtwotime-angleplotscorrespondingtothekneeandthehipangleduringone
gramisformedbyignoringthetimeaxisofeachcurveanddirectlyplottingkneean-
gleVShipangleasshowninFig.3(c).Aformalwayofdescribingcyclogramsistoidentifythemasthe
so-called“parametriccurves”.Aparametriccurveisobtainedbydirectlyplottingtheassociatedvariables,
,whereeachvariableisafunctionofaparameter,.Intheprentcontextthejoint
antageofthisformaldefinitionisthatitcanbe
extendedtoincludeothercurvessuchasthephadiagrams[4,31,30]andthemomentanglediagrams[18].
Pleanotethatforthejointangleassignmentconventionadoptedinthispaper,theplanarcyclograms
sothatalthoughthepointsonthecurves3(a)and3(b)areequally
cingofpointsonacyclogramisdirectlypropor-
ejointsmoveslowly,thepointsareclospaced.
2Awebarchforthekeyword“cyclogram”pointstonumerousarticlesoncyclogramsrelatedtothefunctioningofinstrumentsud
inspaceflights!
4
GoswamiGaitparameterization...
00.511.5
−10
0
10
20
30
40
50
time(cond)
Hi
p
A
n
gl
e
(
d
e
g
r
e
e
s
)
(a)HipangleVStime
00.511.5
−80
−70
−60
−50
−40
−30
−20
−10
0
time(cond)
K
n
e
e
A
n
gl
e
(
d
e
g
r
e
e
s
)
(b)KneeangleVStime
−40−200204060
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
10
05degreeup
HipAngle(degrees)
K
n
e
e
A
n
gl
e
(
d
e
g
r
e
e
s
)
(c)Hip-kneecyclogram
150
160
170
180
190
−200
−180
−160
−140
−120
−100
80
85
90
95
100
105
110
115
Hipangle((degree)
Kneeangle((degree)
A
n
kl
e
a
n
gl
e
(
(
d
e
g
r
e
e
)
(d)Hip-knee-anklecyclogram
Figure3:Constructionofahnter-clockwi
rFig.(d)wasprovidedbytheGaitLab,Universityof
Waterloo,.
Steadyhumanlocomotionisalmostperiodicandcyclogramsobtainedfromjointanglesignalsofequal
timelengths,suchasFigs.3(a)and3(b),logramfeaturesthatweuin
thispaperforparameterizationareesntiallyvalidforsuchcontoursbutforalgorithmicsimplicitywewill
assumethatthecontoursareclod.
Finally,cyclogramsdonothavetobeplanaralthoughforvisualizationpurposweshouldlimitourlves
.3(d)showsa3-dimensionalcyclogramobtainedbysimultaneouslyplotting
thehip,[55]forexamplesofsometraditional3-dhip-knee-ankle
cyclogramsand[6]for3-dcyclogramsobtainedfromabsoluteelevationanglesofthigh-shank-foot.
CyclogramsandphadiagramsWehavementionedearlierthatourparameterizationmethodiqually
applicabletoothercyclicreprentationsoflocomotionsuchasthephadiagram[4,30,31],themoment-angle
diagram[18],andthevelocity-velocitycurves[51].Sincethephadiagramhasaformidablefollowingand
arephysicallymorefundamentalthanthecyclograms,itisimportanttodistinguishbetweenthetwo.
mostpopulardefinitionsofthe
phaspacedescribeitasthespaceconsistingofthegeneralizedcoordinate/generalizedmomentumvariables
andthegeneralizedcoordinate/generalizedvelocityvariables[3,26].Theconddefinition,accordingto
whichthephaspaceisidenticaltothestatespace,ofa
5
GoswamiGaitparameterization...
systemisreprentedbyapointinitsphaspaceandtheevolutionofthesystemisgivenbyatrajectoryin
thephaspace,calledthephadiagram.
Inourcurrentcontext,phaspacewouldcontainthejointdisplacementsandthejointtrajectoriesofthe
movementunderstudyandthereforecanbeconsideredasasupertofcyclograms,whichcontainthejoint
r,sinceneithertheentirephadiagramnortheentirecyclogramofamulti-
degreeoffreedomsystemisgraphicallyvisualizable,wehavetobecontentwithlower-dimensional(most
frequently2-dimensional)lanarversionsofthediagramscarrysignif-
rangle-anglecyclogramprovidesinformationaboutthepostureofthe
legandrangle-velocitypha
diagram,ontheotherhand,reprentsthecompletedynamicsofasinglejointbutprovidesnoinformation
aboutthecoordinationoftwojoints.
Bothcyclogramsandphadiagramsareimportantsignaturesoflocomotionandeachhasitsownmer-
ghtraditionallycyclogramshavereceivedmoreexposureinthebiomechanicscommunity,pha
diagramshavestartedtobenoticedaswell[29,30,31].
2.2Interpretationofatypicalcyclogram
Itisinstructivetostudyatypicalcyclogramandrelateitsimportantfeatureswiththecharacteristicsofthe
rtoFig.2.2(andFig.2forthejointangleassignmentconvention)
completegaitcycleisdividedinto10equaltemporalgmentsandaremarkedby’*’n
importanteventsinagaitcyclearemarkedwithan‘o’onthecyclogramalongwithacorrespondingshort
description.
Letustravelalongthecyclogramfromtheinstantofheel-strike(markedhsinthefigure).Theperiodjust
aftertheheel-strikeisreprentedbyanalmostverticallinecharacterizingtherapidkneeflexionandlittlehip
ckcreatedbytheheelimpactwiththegroundisquicklyattenuatedduringthisperiod.
Afterfoot-flat(ff)thehipbeginstoextendalongwiththekneeshownbytheinclinedlineconnectingfoot-flat
andmid-support(msu).Thetimeperiodbetweenhsand(c)toiscalledtheloadingphawhichoccupies
about
tpha,theweight-bearingpha,ischaracterizedbyanextending
knee.
Theefer-extension
ofthehipreachesamaximumandgraduallyrevers,andthepreviouslyextendingkneesmoothlytranslates
tofl-offoccursbeforethekneeisfully
flexed.
Typicallytheswingphastartsat
thighextensionangleandakneeflexionofabout80%ofthemax-
-swingtheflexionofthethighiscompleteandtheknee,afterreachingitsmaximumflexion
salmostnothighmovementbetweenthe
mid-swingandtheheel-strikeandthephaiffectedbyasteadyreductionofthekneeflexion.
Weconcludethisctionbyprentingsomeofthehighlightsofthehistoricaldevelopmentoftheconcept
ofcyclogram.
2.3Historyofcyclograms
AliteraturearchofthecyclogramrevealsthenameofGrieveasthefirsttopropotheuofcyclograms
(theywerecalledtheangle-anglediagrams)[22,23].Grievearguedthatacyclicprocesssuchaswalkingis
betterunderstoodifstudiedwithacyclicplotsuchasacyclogramandpropodtheinclusionofauxiliary
informationsuchasthetimeinstantsofheel-strikeandtoe-offinthecyclogramtorenderthemmoreinforma-
ingthedeviationsofgaitcharacteristicsoncyclogramshesuggestedthatthedeviationsinthegait
characteristicscannotbeadequatelymodeledasameansquaredeviationsincethedeviationsarenotrandom
andthatboththedirectionandthemagnitudeofdeviationsincombinationwithothershavetobeconsidered
andthatonlycertaincombinationsofdeviationsaretoberegardedas“normal”.Grievealsorecognizedon
thecyclogramtheprominentshockabsorptionphaduringheel-strikeandthe“whiplasheffect”oftheleg
atfastergaits.
Sixdifferentcyclogramscorrespondingtosixdifferentwalkingspeedsforeachofhip-knee,hip-ankle,and
knee-anklecombinationswereprentedin[37].
Cyclogramsfromstandingbroadjump,stairclimbing,racewalkingaswellasnormalwalkingatdifferent
speedsareprentedin[8].Oneimportantcontributionofthispaperisthedemonstrationthatcyclograms,
insynergywithotherkinematicreprentationsofmulti-jointmovements,canbecomeapowerfulanalytical
tool.
WeencounterthesubquentworkofMilnerandhiscolleaguesduringtheventiesupuntil1980[40,
25,24].Uofcyclogramsasameansoftrackingtheprogressofpatientsundergoingtotalhipjointrecon-
6
GoswamiGaitparameterization...
−40−200204060
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
10
hs
msu
(c)hs
msw
to
ff
hr
(c)to
(c)ff
extensionflexion
flexion
extension
levelwalk
HipAngle(degrees)
K
n
e
e
A
n
gl
e
(
d
e
g
r
e
e
s
)
(a)
Legend:
(c)=contralateral(leftleg)
hs=heel-strike
msw=mid-swing
hr=heel-ri
msu=mid-support
to=toe-off
ff=footflat
(b)
Figure4:Atypicalhip-kneecyclogramforlevelwalk(adaptedfrom[9]).SeeSection2.2fordescription.
structionwaxploredin[40].Itwasdemonstratedthat,asonemightexpect,thecyclogramsofabnormal
gaitsaregeometricallyverydifferentandareeasytovisuallyidentifyfromthoobtainedfornormalgaits.
Thesameworkalsoreportedtheevolutionofthegeometricformofthecyclogramasafunctionofwalking
,noattempthasbeenmadetoanalyticallystudythequantitativegeometriccharacteristicsofthe
saddresdin[25,24]andsubquentpapers.
Theimportanceofaquantitativestudyofcyclogramshapesinordertoextractrelevantnumbers,tobe
udasgaitdescriptorsconcerns[25].Onlynormalhealthygaitsatdifferentspeedswereconsideredinthis
eometriccharacteristicsoftheclod-loopcyclograms,theperimeter
,thearea,andthe
hownthatalthoughtheperimeterandtheareaofcyclograms
areapproximatelylinearlyrelatedtotheaveragewalkingspeed,thequantitystaysroughlyconstant.
Thislatterqramareais
intgertherange,thelarger
ondconcurrentpaper[24]thesameauthorsstudiedcyclogramsobtainedfrom
ntityagainreflectedtheabnormalitiesinthe
gaits.
[10]comparesthegaitpatternsofhumananddogsbymeansofcyclograms(calledcyclographsandan-
gle/anglediagramsinthepaper).Itemphasizedtheutilityofcyclictracesofjointvariablesbypointingout
thatacoordinatedmotionofalegistobeperceivedasaninteractionbetweentwoormorelimbsratherthana
logrampatternisnotedtobeanextremelystable
mechanismtoidentifygaitbehavior.
Thegeometricsimilarityoftwocyclogramsortwovelocity-velocitycurvesoflocomotionwascomputed[44,
51]byemployingthediscretechain-encodingreprentation[17]kfollowsthesamephi-
losophy,thatofthequantificationofthesimilarityofdifferentmovementpatterns,whichisnicelyarticulated
in[51].
In[9]tifferentlevelsof
speedcorrespondingto0.5st/s(slow),0.9st/s(medium),and1.3st/s(fast)lograms
.2.2wehavefollowedthe
hologicalcaswereconsideredtoshowhowa“standard”cyclogramandsuperimpod
3Fivedifferentspeeds,from2.34km/hto6.91km/hwerestudied.
4Stature/snormalizedbytheleglength.
7
GoswamiGaitparameterization...
standarddeviationdatacanbeudtodetectabnormalgaitconditions.
Inanunpublished(andpersonallycommunicated)article[49]levelanduphillanddownhillslopesof,
oundthatwalkingspeedatallgradeswasslightlyreducedcomparedtolevel
-kneecyclogramsudinthisarticledemonstratedthatdownhillwalkisassociatedwith
largerkneeflexioninstancephaandreducedhipflllwalkingboththe
kneeandthehipareflexedatfootcontactandintheswingpha.
Neuralnetworkhasbeenudtoperformautomateddiagnosisofgaitpatternsreprentedbycyclograms[2].
Oncetrained,thenetworkcanidentifywitha
successratethethreedifferentconditions–normalgait,
wthatkinematicanalysisisofgreat
helpinthediagnosisandrehabilitationoflocomotordisorderssuchascerebralpalsyandspasticdiplegiais
reinforced[2].
3-dcyclogramshavebeenrecentlyudinadifferentcontext,inordertoshowthemodalbifurcation
displayedinhumanlocomotion[55].Traditionally,cyclogramsaredrawnwiththeinter-gmentaljointvari-
kablerecentresultshowsthatifinstead,thecyclogramsareconstructedfromtheabsolute
elevationanglesofthelimbs(anglesmadebythigh,shankandfootwiththevertical),theresulting3-dcyclo-
gramofhumanlocomotionliesonaplane!Thismeansthatastrongunderlyingstrategyisinactionduring
locomotion.
Althoughitisaboutrunninggait(notwalking)gait,[7]reportsonethemostsystematicanalysonthe
clogramswereudtodemonstratethegradual
readrangeofthe
cushioningphakneeflexionwasnotedasaremarkablefeaturefordownhillrunningaswealsoobrvein
ourcyclogramsfordownhillwalking.
Thevalueofobjectivedescriptionofhumanlocomotioncanbeappreciatedfromtherecentwork[30,31]on
[30]theperiodicityofgaitwasdeterminedfromthePoincar´emap[3]ofthelocomotion
whereasin[31]thedifferenceintheareainsidethephadiagramsobtainedfromtheleftandtherightlegof
thesamepersonwassuccessfullyutilizedtoquantifythegaitasymmetryinpost-poliopatients.
Beforegettingintotheshapeanalysisofcyclogramswewillbrieflystudytheproblemofslopewalkingin
thenextction.
3Slopewalking
3.1Briefliteraturereview
Inordertofacilitatetheinterpretationandevaluationofourresultswebrieflyreviewtheexistingliterature
iewisnotmeanttobeexhaustiveandonlytheresultsthatarecomparabletoours
arementioned.
Oneofthefirstpapersinthisarea,[14]reportedthatthegroundslopewithintherangeoftodidnot
haveanysignificantinfluenceonthestridelengthandthesteprate.
[50]inastudyoflevelwalkandwalkonslopesofnoticedthataveragechonwalkingspeed
dkneeandhipflexionoftheforwardlimbduring
contactwasconsideredtobethemajorinfluenceofuphillwalkwhereasthofordownhillwalkwerean
increadkneeflexionofthesupportinglimbduringcontactanddecreadthighflexioninlateswing.
In[53]gaitdatafrom5healthymalesubjectswalkingonthelevelaswellason
andslopes.
Theauthorsfoundthattheonanuphillslopethesubjectstookshorterstepsatslowspeedsandlongersteps
atfastspeedscomparedtothointhelevelwalk.
Levelwalkandwalkonuphillanddownhillslopesof,,andwereconsideredin[35].The
authors’foundthatforhigherslopes(bothuphillanddownhill)thewalkingspeedsignificantlydecread.
Whereasonuphillslopesthespeedreductionwascaudbyareductioninthecadence,ondownhillslopes
findingspointtowardstheasymmetryinthewayhuman
beingsrespondtouphillanddownhillslopes.
Inthestudyreportedin[45]onlydownhillslopesof,,,5alongwiththelevelwalk
eportedthattheinfluenceofgroundslopeonthetemporalparametersofgaitwasnot
statisticallysignifi
firststrategy,perhapsunexpectedly,thesubjectsleanforwardandincreathesteplengthandinthecond
thesubjectsstayrelativelyerectbutdecreathesteplength.
[47]ledanalysisshows
thatforuphillwalkingthemeanwalkingspeed,cadence(steps/min),andsteplengthdecreassignificantly
nhillwalk,thespeedandcadencedidnotsignificantlyvarywithslopebutthe
5anslopecorrespondstoanangleof.
8
GoswamiGaitparameterization...
SlopeAngle
HighSpeedCamera
DataAquisitiont-up
Treadmill
-Computer
-Software
-Video
-Stroboscope
Figure5:Theexperimentalt-up.
steplengthsignifintionedherethat[16]foundnosignificant
differencesbetweentheuphillanddownhillgaitsofurbanpedestriansonuptoslope.
[42]studiedtheinfluenceofdownhillslopesonthemechanismoffall,whichisariousissueespecially
horsalsocon
energyconsiderationsofslope-walkingwereconsideredin[46,5].
3.2Experimentalmethod
Thedataprentedinthepaperareobtainedfromtwohealthymalesubjects(28and23yearsofage,181cm
and182cmheight,respectively)withoutanyhistoryoflowerextremityinjury.11flatretro-reflectivemarkers
of1-2cmdikeronthe
shankwereplacedatthetibialepicondyleandtheexternalmalleolus,andthoonthethighwereatthe
eangleisdefinedastheanglebetweenthestraight
angle,ontheotherhand,istheangle
betweenthelinejoiningthetwothighmarkersandthelinejoiningthemarkeratthegreatertrochanterand
-drivenvariableinclinationtreadmillfromTechMachinewasudforall
jectschothe“mostcomfortable”V400video
eraaxiswasperpendiculartothelengthofthetreadmillthus
istereddatawereprocesdtaking
kerpositiondatawasfilteredwitha-orderButterworthfilter
.5forasketchoftheexperimentalt-up.
Theinclinationofthetreadmillwasvariedfrom
simplifythelogistics,twoparatessions,oneeachforuphillwalkanddownhillwalk,wereorganized.
However,inordertominimizethepossibilityofanticipationonthepartofthesubjects,thequenceinwhich
jectsworesoftshoes.
complete8minutesofwalkoneachslope,we
havelectedonecyclewhichisreprentativeoftheparticularslopeandwhichdoesnotshowanytransients.
Otherthanfilteringthetime-angledataasmentionedearlier,wedonotadoptanysophisticatedgmentation
technique(suchas[12])ethis,thetrendintheevolutionofthegaitdescriptors
asafunctionofthegroundslopeisclearlyidentifiablewhichillustratestheefficiencyandrobustnessofthe
ranexplanationiscalledforasthecommonpracticeistoaveragethegaitdata
oververaldifferentindividualsand/orveraltrailsfromthesameindividual.
Averaginggenerallyimprovestherobustnessofthedatabyreducingtheeffectsofthestatisticaloutliers.
Anunavoidableconquencei
6Werealizethatthedefinitionof“jointangle”aticdefinitionofjointanglesfrom
humangaitdataisatopicofourongoingstudy.
9
GoswamiGaitparameterization...
indicatedintheliteraturethatgaitadaptationstrategiesinachangedenvironmentoftenvaryfromperson
toperson[45]andbydoingagrossaveragingwemayrisklosingsomeofthesubtlestrategiesadoptedby
nourlveswiththeview[41]thatitisimportanttostudytheresponsofindividual
subjects.
Thus,althoughthedataudhereisareprentativeofthenormalgait,wedonotimplythatthespecific
gaitdescriptorvaluextracte
importantpointisthattheparameterizationtechniqueiquallyvalidfortheaverageddataaswellasforthe
datafromanindividualsubject.
3.3Asnapshotoftheresult
.6showscyclograms
ondownhillslopeschangingfrom
toandFig.3.3showscyclogramsonuphillslopeschangingfrom
tainedforeachchangeinthegroundslopeprovidesuswitharichdatabaappropriate
fortheparameterizationtechniques.
Someoftheinterestingqualitativefeaturesofslope-walkingarevisiblydiscerniblefromFigs.6and3.3.
Fig6showstheprominentimpactcushioningphafordownhillslopesmarkedbyavirtualreversalofthe
tobecomparedwiththecyclogramsforuphillslopestonotetheutterlackof
impactinthelatter.
Therangeofhipmovementsteadilydiminishesfordownhillslopesasividentfromthehorizontally
“squashed”geofhipmovementhas,infact,alinearlyincreasing
trendaswegofrom
toslope,eplotFigs.8(b)and8(c).Thekneeanglebehavesinanopposite,
alrangeofkneeangleisalinearlydecreasingfunctionofslope(as
wegofromto)asshowninFigs.8(a)and8(d).HerewenotethesymmetricnatureoftheFig.8(a)
and8(b).Quantitativelywecansaythattherangeofkneejoint(hipjoint)decreas(increas)attherateof
perdegreeincreainthegroundslope.
Fig.9prentstheevolutionofthekneeandhipanglesatheel-strike(consideredtobelocatedatthepoint
of“folding”ofthecyclogram)alongwiththeirquadraticfitisinterestingtonotetheremarkably
symmetricnatureofevolutionofthehipandthekneeangles[13].
4Moment-badfeaturesofcyclograms
Theidentificationandclassificationofplaneclodcurves,asubjectofstudyoftencalled2Dshaperecog-
nition,isatopicofconsiderablerearchinterestinthefieldsofComputerVisionandPatternRecognition.
Theobjectiveoftherearch,simplystated,istoidentify,classify,anddescribe2Dobjectsorsceneswithun-
knownpositionandorientation,thePatternrecognitionapplications,
thereisaneedforlectingcertaingeometricpropertiesoftheobjectwhichareasinnsitiveaspossibleto
thevariationsinsize,displacement,ropertiesarecalledthe
fieldofcomputerized(handwritten)characterrecognitionalsohassimilar
requirements.
Thereareveraltechniquesforquantifyingplanarshapesandthereaderisdirectedto[33,32,19]for
concentrateontheuofmomentsforshapeidentification
andclassififirstsignificantworkontheuofmomentsinidentifying2Dshapesisby[28].The
ufulnessofthistechniquestimulatedalotofrearchandalgorithmsweredevelopedtorefineandextend
themethodandmakeitrobustagainstnoi[48].Somerelativelyrecentarticlesinthisdomainare[39,1].
Efficientalgorithmstocomputemomentswereprentedin[34,38,54].Inthispaperwehaveadaptedthe
methodin[34]tocomputeperimeter-badmoments.
Itcanbeshownthattheinfinitetofmomentsuniquelydetermineaplanarshapeandvice-versa[33].In
otherwords,themomentsaretheaxesinaninfinite-dimensionalspaceinwhichacontourisreprentedbya
ldbeaddedthatthehigher-ordermomentsarensitivetonoiandhardertointerpret
physically.
Area-badmomentsVSperimeter-badmomentsLetusrecognizecertaindistinctivecharacteris-
ticsoftheclosharacter-
fall,asshownintheintofFig.10,
thecyclogramsarenot,the
contourisratherunsmoothwhichisoftenafunctionoftheamountofnoiintheoveralldataregistration
,theplanecyclogramsfrequentlyconsistoflfinterctingloops.
10
GoswamiGaitparameterization...
0
0
(a)slope
0
0
(b)slope
0
0
(c)slope
0
0
(d)slope
0
0
(e)slope
0
0
(f)slope
0
0
(g)slope
0
0
(h)slope
0
0
(i)slope
0
0
(j)slope
0
0
(k)slope
0
0
(l)slope
0
0
(m)slope
0
0
(n)slope
Figure6:o
Fig.2.2.
11
GoswamiGaitparameterization...
0
0
(a)slope
0
0
(b)slope
0
0
(c)slope
0
0
(d)slope
0
0
(e)slope
0
0
(f)slope
0
0
(g)slope
0
0
(h)slope
0
0
(i)slope
0
0
(j)slope
0
0
(k)slope
0
0
(l)slope
0
0
(m)slope
0
0
(n)slope
Figure7:oFig.2.2.
12
GoswamiGaitparameterization...
−15−10−5051015
20
30
40
50
60
70
80
90
100
110
120
Groundslope(degree)
R
a
n
g
e
of
k
n
e
e
m
o
v
e
m
e
nt
(
d
e
g
r
e
e
)
(a)
−15−10−5051015
0
10
20
30
40
50
60
70
80
90
100
Groundslope(degree)
R
a
n
g
e
of
hi
p
m
o
v
e
m
e
n
t
(
d
e
g
r
e
e
)
(b)
−100−80−60−40−20020
−10
−5
0
5
10
Rangeofkneemovement(degree)
Gr
o
u
n
d
sl
o
p
e
(
d
e
g
r
e
e
)
(c)
−200204060
−10
−5
0
5
10
Rangeofhipmovement(degree)
Gr
o
u
n
d
sl
o
p
e
(
d
e
g
r
e
e
)
(d)
Figure8:Evolutionofthetotalrangeofmovementofa)kneeandb)ecurvesareshown
withstraightlinesofleast-squaresfit,c)andd)reprenttheactualjointrangesofthekneeandhip,respectivelyasfunctionsofslope.
Traditionally,thePatternRecognitioncommunityhasutilizedthearea-badmomentsofbinary2Dshapes.
Whereaswecoulduthesametechniqueshere,weprefertheperimeter-badmomentsofcyclogramcontours
,thecyclogramisnottheboundaryofanyrealobjectbutistheobjectwho
,theperimeter-badmomentsareequallyapplicabletohigher
dimensionalcyclograms(VSVS),eFig.3(d),wherethearea-badmomentslotheir
,the2Dcyclogramsoftenconsistoflf-interctingloopsandthearefreetoliepartially
resituationswheretheinterpretationofwhatareainsideacurve
ghwedonottreatthecasoflf-interctingatprenttheydooccur
erpretationofareaispecially
complicatedforaltherhand,
eraleffectofnoiinthe
ysignificantlyincreatheperimeterofthecyclogramwithout
tuitiveideaixploredmoreanalyticallyin[43].
Inordertocalculatetheperimeter-badmomentswemakeaphysicalanalogyofthecyclogramwitha
findtheexactmomentofeach
sideofthe
-cedureis
13
GoswamiGaitparameterization...
−15−10−5051015
−80
−60
−40
−20
0
20
40
60
80
Groundslope(degree)
K
n
e
e
a
n
d
hi
p
a
n
gl
e
at
h
e
el
−
s
t
r
i
k
e
(
d
e
g
r
e
e
)
Figure9:Evolutionofthekneeandhipangleatheel-strikealongwiththeirquadraticfits.
analogoustothatofcalculatingarea-badmomentsbutthenumericalvaluesobtainedareobviouslydiffer-
ent.
4.1Computationofgeneralizedmoments
Inthisctionweformallyintroducetheideaofgeneralizedmoments,showtheirrelationshipstoveralbasic
featuresofthecontourandprentasimplerecursiveformula(following[34])tocalculatethegeneralized
momentsofhigherorders.
Thetwo-dimensionalmomentsoforderofacurveoflengthintheplaneare,
(1)
rtingpointonthecurve,correspondingtodoesnot
haveanyinfliceoforigin,doesnothaveasignificant
effectbutisfixedbyourangleconvention.
Theaboveequationcanbemodifiedforacontourcomprising
straightlinegmentsasfollows,
(2)
whereisthelengthofthegmentandixpresdas
(3)
Intheaboveequationtheinfinitesimallinegmenthasbeenreplaced,viaachangeofvariables,by
,whereistheslopeofthelinegment,needtomakesurethatthe
integrati
thisimpliedorderwewillhenceforthsimplyputtheintegrationfromto.
iableforthelinegmentcan
beexpresdas
(4)
emodifications,isrewrittenas
(5)
Followingtheprocedureprentedin[34]forthearea-momentsofa2Dshape,wearchforrecursive
goalwedothefollowing
14
GoswamiGaitparameterization...
(6)
(7)
Therecursiveequationsareoftheform
(8)
Anymomentoftheformsuchas,withwhichtherecursionmustbegin,canbecalculated
byasimpleintegration
(9)
.
Wehavetotakeintoaccountthesituationwheretheconsideredlinegmentisvertical;theslopeofthis
lineisnotdefica,insteadofre-parameterizingwiththevariableweratherdoitwith,as
.Thequantity,theinveroftheslope,
expressionforthegeneralizedmomentsforaverticallinegmentthereforereducesto,
(10)
ThefirstfewmomentsofastraightlinegmentareprentedintheTable1.
Table1:Momentcomputationoflinegments
momentnon-verticalgmentsverticalgments
Therecursionprocessmustfollowthequence:
4.2Parameterizationofcyclogramfeatures
Wenowconsidertheparameterizationofthemoment-baddescriptorsofthecyclogramsastheyevolveas
hca,wedefinethegaitdescriptor,plotitvolution
asafunctionofthegroundslopeanddiscussitstrend.
4.2.1Perimeter
.11(a)weprenttheevolutionofthe
cyclogramperimeternormalizedagainsttheperimeteratslope(whichiqualto).Theperimeter
isalinearlydecreasingfunctionofthegroundslopeascanbeinferredfromthestraightlineinthefigure
ghthe“jerkiness”ofthejointmotionwasgivenasapossible
reasonofanincreaintheperimeterofsimilarcurvesin[25],itisunlikelytobereasonhere.
15
GoswamiGaitparameterization...
Figure10:nimportrams
consistofatofunequalstraightlineachlineconnectingtwosuccessivedatapoints.
Inordertointerpretthecyclogramperimeter,weexpressthelengthofthestraightlinegmentcon-
nectingtwosuccessivedatapointsand,eFig.10as,
(11)
whereandaretheaverageangularvelocitiesofthehipandthekneejoints,respectivelyduringthe
interval,ingthat,theaboveequationscanbe
extendedtotheentirecyclogram.
AccordingtothefirstoftheEqns.11thecyclogramperimeteristhe“totaldistancetraveled”bythetwo
gerthejointexcursion,xcursion
isnottobeconfudwithjointrange(whichwediscusslater)–ajointcanhavealargeexcursionwithina
eexampleisFig12wherethecyclogramonthelefthasahigher
-jointrangebuta
.11(a)thusindicatesthatthetotaljoint
excursionlinearlydecreasastheslopechangesfromto.
ThecondofEqns.11,ontheotherhand,relatesthecyclogramperimetertotheaveragevelocityofthetwo
lesofequalduration,theperimeterisproportionaltotheaverage
ationofgaitcycleisalinearlyincreasingfunctionofslopeasshowninFig.11(b).The
plotoftheperimeter/cycledurationratiohasthesamenatureasthatofFig.11(a),plies
thatthenotethat
ahigheraveragejointvelocityduringacycledoesnotnecessarilyimplyahigherwalkingspeed.
Incidentally,alongercycledurationcorrespondstoasmallervalueofcadencewhichiswhatweobrve
foruphillslopesthusprecilycorroboratingtheobrvationsby[53,47].
4.2.2Area
Althoughtheareadoesnotdirectlyfallintoourschemeofperimeter-badmoments7,weincludeitforits
tion,cyclogramareaisrequiredtocalculateitscircularitycriterion(Sec-
tion4.2.3).
Thesignedareaofapolylinecontourcanbecomputedas
7Inthearea-badmomentscheme,theareaofaclodcontourisitszerothmoment
16
GoswamiGaitparameterization...
−15−10−5051015
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
Groundslope(degree)
N
o
r
m
al
i
z
e
d
c
y
cl
o
g
r
a
m
p
e
r
i
m
e
t
e
r
(a)
−15−10−5051015
0.4
0.6
0.8
1
1.2
1.4
1.6
Groundslope(degree)
N
o
r
m
al
i
z
e
d
g
ai
t
c
y
cl
e
p
e
r
i
o
d
(b)
Figure11:Evolutionofnormalizedcyclogaight
linesshowlinearfitofthedata.
x
Y
RangeofX
RangeofX
Figure12:Thedifferencebetweenthejointexcursion(measuredbyperimeter)andthejointrange(relatedtocyclogramarea)is
demonstratedwithartifilogramonthelefthashigherjointrangebutalowerjointexcursioncomparedtothaton
theright.
(12)
whichassignsapositivevaluetotheareainsideacounterclockwicontourandanegativevaluetooneinside
troducerrorsinourcalculationsforcyclogramswithinterctingloops.
Fig.13(a)malizationis
donewithrespecttotheareaofacirclewhoperimeteriqualtothatofthecyclogramcorrespondingto
aboliclinereprentsaquadraticfitofthedata.
Notingthatthecyclogramareaisanindicationoftheconjointrangeofjointmovements[25]wecansay
thattherangeismaximumforlevelandshallowuphillslopes.
Althoughwearenotawareoftheuofcyclogramareainquantifyinggaitexceptthatby[25,24],thearea
insidethephadiagram,inadifferentcontext,wasudtoobtainameasureofgaitsymmetryinpost-polio
patients[31].
4.2.3Circularityorcompactnessorroundedness
Severalversionsofadimensionlesscriterioninvolvingtheperimeterandtheareaofaclodcontourand
characterizingitscircularity,[33]udtheexpres-
sionwhereasquantitiessuchas,[32],and[25,24]
17
GoswamiGaitparameterization...
−15−10−5051015
0.1
0.2
0.3
0.4
0.5
0.6
Groundslope(degree)
N
o
r
m
al
i
z
e
d
c
y
cl
o
g
r
a
m
a
r
e
a
(a)
−15−10−5051015
0
0.2
0.4
0.6
0.8
1
circle
le
square
Groundslope(degree)
C
y
cl
o
g
r
a
m
"
ci
r
c
ul
a
r
i
t
y
"
(b)
Figure13:Evolutioaboliclinesreprentquadratic
fi(b)thecircularityofwell-knowngeometricentities,thecircle,thesquareandtheequilateraltriangleareshownfor
comparison.
paper,weusimplybecauitisunityforacircle(whichisthemaximumpossiblevalue)andthata
parisonwenotethatthevalues
offorasquareandforanequilateraltriangleareand,llyoblongobjectshave
.13(b)prentstheevolutionofthecircularitycriterionasafunctionofthe
figureindicatesthatthecyclogramcircularityismaximumaroundslopeanddecreas
forlower(includingdownhill)qualitativelyverifi
circularityofthenegativeslopecyclogramsis,toalargeextent,duetothefactthatfollowingtheheel-strike
thecyclogramtrajectoryreversitsdirectionandretracesitlftherebyaddingsignificantlytotheperimeter
butverylittletothearea.
Itshouldhoweverbepointedoutthattwosignificantlydifferentshapesmayposssthesamecircular-
ity[56].Also,thecriterioncansignificantlyalterbetweenacontinuouscurveanditsdiscretecounterpart,
dependingonthefinenessofdiscretization.
4.2.4Location
Location,inthiscontext,meansthepositionofthecenterofmass(CM)ofawireofuniformmassintheshape
itionoftheCM()isgivenby
and(13)
whereandarethetwofirst-ordermomentsofthepolygonalcontour,and,asenbefore,isits
perimeter.
InFig.14weplotthedistanceofthecyclogramCMfromthecoordinateoriginasafunctionoftheground
eofquadraticfitisalso
.14(b)earfromtheplotsthat
theCMisthenearesttotheoriginfordownhillwalkonfeebleslopesandmovesawayforpositiveaswellas
negativeslopes.
Forthejointangleassignmentconventionudinthepaper(refertoFig.2)thecoordinateoriginofthe
cyclogramplanecorrespondstoastraightlegconfiedistanceofa
pointfromtheorigintothecyclogramreprentsthedeviationofthecurrentconfigurationfromthisconfig-
yclogramCMisviewedasthe“average”legconfigurationduringacompletewalkcycle,its
distancefromtheoriginwillbeaquantificationofthedeviationofthisaverageconfigurationfromthepassive
legconfigurationwhichisvertical8.
8Wenotethatthis“average”isapurelygeometricaverageandtimeisnotinvolvedinthisdefinition.
18
GoswamiGaitparameterization...
−15−10−5051015
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
Groundslope(degree)
C
y
cl
o
g
r
a
m
C
M
di
s
t
a
n
c
e
f
r
o
m
o
r
i
gi
n
(
d
e
g
r
e
e
)
(a)
−1
−60
−50
−40
−30
−20
−10
0
10
20
−13
−8
−4
0
+4
+8
+13
Hipangle(degree)
K
n
e
e
a
n
gl
e
(
d
e
g
r
e
e
)
LocusofcyclogramCMwithgroundslope
(b)
Figure14:aticapproximationissuperpodonthe
econdfigureweethelocusoftheCMpositionwithslope.
4.2.5Orientation
Theangle(boundedbetween)betweenthepositiveabscissaandthelineofleastcond-ordermomentof
helineoftheleastcondmomentpass
throughtheCMofthecontour(),itquationwillbesimplerifwedisplacethecoordinateframes
suchthattheneworigincoincideswiththecenter[27].AftereffectingthisdisplacementasshowninFigs.15(a)
and15(b)thepointsonthecurvewithrespecttotheneworiginareexpresdas
.Weworkhenceforthwithpoints.
ThemomentscalculatedwithrespecttoacoordinateframesituatedattheCMofanobjectarecalled
tralmomentscanbecalculatedbythesameequations
prentedinTable1,ewcoordinates
.
Theorientationofthelineofminimumcond-ordermoment,isgivenby[32,33]
(14)
entationofthe
qns.14thesignscorrespondtothe
meshownthat
thecalculationoftheangleiquivalenttodeterminingtheeigenvectors(thedirectionsofthelines)andthe
eigenvalues(themagnitudesofthemoments)ofthematrixofcondmoments.
KeepingtheoriginfixedattheCM,ifwenowrotatethecoordinateframesothatitisalignedwiththemax-
imumandminimumcond-ordercentralmoments,themomentcalculationsaremuchsimplifi.15(c)
otatedcoordinateframeandthemoment
matrixwrittenaboveisdiagonal.
Themostcharacteristicfeatureintheevolutionoforientationwithgroundslope(Fig.16)isthetwocon-
stantoinspection
19
GoswamiGaitparameterization...
−40−200204060
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
10
HipAngle(degrees)
K
n
e
e
A
n
gl
e
(
d
e
g
r
e
e
s
)
OriginalCyclogram
(a)Cyclogram
−50050
−50
−40
−30
−20
−10
0
10
20
30
40
50
CGdisplaced
HipAngle(degrees)
K
n
e
e
A
n
gl
e
(
d
e
g
r
e
e
s
)
(b)OriginshiftedtoCM.
−50050
−50
−40
−30
−20
−10
0
10
20
30
40
50
Axesrotated
HipAngle(degrees)
K
n
e
e
A
n
gl
e
(
d
e
g
r
e
e
s
)
(c)Axesalignedwithprincipal
-ordermoments.
Figure15:Thedisplacementandrotationofthecoordinateframestosimplifymomentcalculations.
ofFig.3.3convinentation
analysisquantifiesthisgeometricfeature.
4.2.6Eccentricityandthebestfitellip
Thereareveraldefinitionsofeccentricityofaclodplanarcontourthesimplestofwhichistheratioof
themaximumandminimumcondmoments[27].Eccentricityisalsoanindicationoftheoblongnessof
thecontour,verpreferusingeccentricitywhichis
convenie.16(b)reprents
polynomialapproximationof
thedataisshownsuperpod.
Theabovedefiningtothis
definitiontheeccentricityofacircleisunitybutthatofalineisinfinity(astheminimumcondmomentfor
alineiszero).Abetterdefinitionisthus[32]
(15)
accordingtowhichthecurveofminimumeccentricityisacirclewhichhasandforastraightline.
Inyetanotherapproachtheeccentricityofacontourisdefinedastheratioofthelengthsofthemi-major
andthemi-minoraxesofthebest-fit-fitellipistheellipwhichhasthe
bethemi-majorandthemi-minor
axes,respectively,ofthebest-fistandthegreatestmomentsofinertiaoftheellipare
and(16)
Forthebest-fitellipwehave[33]
and(17)
Thenatureoftheplotsofthetwolatterdefinitionsofeccentricityareverysimilartothatoftheformer.
4.2.7Quantificationofcyclogramevolution
Inordertodemonstratehowwecanprovideaglobalpictureoftheevolutionofcyclogramswiththehelp
firstfigure(Fig.17)thenormalized
perimeter,theratioofmaximumandminimumcondmomentsandthedistanceofthecyclogramCMfrom
uddatafromthelinefi
thecondplotwehaveshownthenormalizedcyclogramarea,circularityandthenormalizedcycleduration.
20
GoswamiGaitparameterization...
−15−10−5051015
80
90
100
110
120
130
140
150
Groundslope(degree)
A
n
gl
e
o
f
o
r
i
e
n
t
a
t
i
o
n
(
d
e
g
r
e
e
)
(a)
−15−10−5051015
0
2
4
6
8
10
12
14
16
18
20
Groundslope(degree)
R
a
t
i
o
o
f
m
a
x
a
n
d
mi
n
s
e
c
o
n
d
c
e
nt
r
al
m
o
m
e
nt
s
(b)
Figure16:Evolutionofa)cyclogramorientationandb)theratioofmaximumandminimumcondcentralmomentswithchangein
firstcurveisfieinthecondfigureshowscubicfitofthedata.
Thefiguresreprentsignaturesofnormalwalkingofthesubjectbycompactlycapturingamultitudeof
information.
4.2.8Higherordermoments–aninvariantofslopewalking?
Thehigherordercentralmomentsofthecontourarecalculatedwithrespecttothecoordinateaxesfixedto
gnmentisdonebymeansof
multiplyingeachdatapointbymeansofarotationmatrixas
(18)
whereandistheorientationangleofthecontour.
Ingeneral,unlessnormalized,thehigherordermomentshavehighnumericalvaluesaswecananticipate
ertheyareknowntobensitivetonoiwhichmeansasmallchangeinthecyclogramwill
lutionsofthefourthird-ordercyclogrammomentsareshownin
rifweconsidertheratios
ofandasshowninthebottomlineofFig.18wenoticethatinaremarkablemannerthequantities
tofisshownwithtwoconstant
datafitsasthereisadiscrete(butnotoflargemagnitude)lot
ofwehavesuppresdthevalue(=-21.537)correspondingtoslopewhichweconsideredtobean
therinterestingtonotethatinspiteofthelargemagnitudesofthemoments(ordersofto
)thoutaconcretephysicalinterpretationofthethird-order
cyclogrammoments,thequantitieshavethepotentialtoplaytheroleofinvariantsofslope-walking.
Anothercandrethe
combinationsofmomentsofacertainorderwhichareinnsitivetorotationandreflectionofthecontour
rd-orderinvariants[33]areand
.Theratio,turnsouttobeagoodcandidateofinvariantinslope-walkingas
confi,inthiscathehighvalueoftheratioforslopeisperhapsanoutlier.
21
GoswamiGaitparameterization...
5Discussion
Gaitparameterizationbymeansofcyclogrammomentscanbeofpotentialuinanumberoffieldssuchas
thequantitativecharacterizationofnormalgait,globalcomparisonoftwodifferentgaits,clinicalidentification
ofpathologicalconditionsandinthetrackingoftheprogressofpatientsunderrehabilitationprogram.
Whathasbeenachieveduptillnowistheestablishmentofastandardcyclogramcorrespondingtothe
normalwalkandtherecognitionofthefactthatthecyclogramscontinuouslydeforminapredictablemanner
tingtheconceptofperimeter-badmoments,eachcyclogramhasbeen
andardqualitativefeatures
ofthehip-kneecnthis
wecanexpectthatthegeneraltrendsoftheslopewalkinggaitdescriptorswillbesimilarforallindividuals.
Whatistobeeniswhethertheprecimoment-valuesreportedinthisworkarealsosubject-independent.
Inorderforthecyclogramstobecomeaneffectivetoolfortheclinicalidentificationofpathologicalcon-
ditionsweneedtheanalyticalskillofcorrelatingapathologywithacorrespondingfeatureofthecyclogram.
Thisnecessitatesathoroughacquaintancewithallthepertinentcyclogrampatternsavailablefromthehuman
r,ifwereprentacyclogramasapointinamultidimensionalspacecapturingallitsmoments,
apathologymightbesuspectedoridentifiedbynotingthepositionofthispointrelativetootherpointsrepre-
imaginejudiciouslyaddingotheraxesinthemultidimensionalspaceinorder
reworkinconcertwiththecliniciansisnecessary.
Asapatientunderrehabilitationcarereturnstoanormallyfunctioninggaitsoshouldhisgaitcyclograms.
Ascalarquantificationofthedifferencebetweenthepatient’sgaitfromanormalgaitisthemultidimensional
distancebetweenthepoints(similartothomentionedintheaboveparagraph)reprentingthetwogaits.
Thelocusofthispointoververalweeksisasignatureoftheprocessofrehabilitation.
Improvementsoftheprentedtechniqueshouldincludeapropertreatmentofthemultipleandlf-
includedloops,dnecessityisthatofacomprehensivensitivityanal-
sitivityofthecyclogrammomentswithrespecttodifferentdatasmoothing/filteringalgorithms
smorereasonabletoperformstatistical
analysonthegaitdescriptorsobtainedfromdifferentgaitcyclesthantoperformaveragingofthedatabe-
rkneedstobedonetoverify
this.
Gaitanalysisperformedonthebasisoftheentirecycleratherthanfromdiscretemeasuressuchasstep
itelikelythatameaningfulnormalizationofthe
cyclogramswouldsignifiimaginenormalizationsbadoncycleduration,
normalization–forexample,constrainingtheentirecyclogramtolieinsideaunitsquare–wouldcomplicate
rlinethefactthatthealgorithmsformomentcalculationsaredirectly
applicabletootherclodcurvesandthusgaitparameterizationcouldbeperformedaswellwithmoment-
anglediagrams[18],phadiagrams[4,31,30]orvelocity-velocitycurves[51].Itisalsopossibletouother
shapeparameterssuchasthebendingenergyofthecyclogramperimeter[56]oritlectricpotential[11]as
gaitdescriptors.
Acknowledgments
HelpfuldiscussionswithBernardEspiau,RearchDirectorofINRIARhˆone-Alpesaregratefullyacknowl-
elCordier,ateatINRIARhˆone-Alpescoordinatedtheexperimentsdescribed
-PierreBlanchiofthelaboratoryUFRSTAPSatJophFourierUniversity,Grenoble
elliofLaboratoryofExerciPhysiology,GIPExerci,
emadehislminary
versionoftheslope-walkingexperimentwasperformedonafixed
slopeintheUFRSTAPSMovement
elpissincerelyacknowl-
edged.
22
GoswamiGaitparameterization...
References
[1]onalmomentfeaturesforuwithparametricandnon-parametric
classifiansactionsPatternAnalysisandMachineIntelligence,18(4):389–399,1996.
[2]icationofneuralnetworksfordistinguishinggaitpatternsonthebasis
&Posture,5:28–33,1997.
[3]´e,,ley&sons,NewYork,1984.
[4]filaneanalysisoflimbtrajectoriesinnon-handicappedandcerebral
dPhysicalActivityQuarterly,2:214–227,1985.
[5]lofAppliedPhysiology,15:1015–1021,
1960.
[6],i,lof
Physiology,494(3):863–879,1996.
[7]ineticsBooks,Champaign,IL,1990.
[8]hJournalof
SportsMedicine,7:129–133,1973.
[9]aitcyclograms:Conventions,-
nationalJournalofRehabilitationRearch,5(4):507–518,1982.
[10]ris,,ativekinematicanalysisofbipedalandquadrupedalloco-
motion:lofAnatomy,128(4):803–819,1979.
[11]nRecognition,
29(3):463–470,1996.
[12]tic
XVIthCongressoftheInternationalSocietyofBiomechanics,Tokyo,August1997.
[13]r,i,13th
SymposiumPostureandGait,Paris,June1997.
[14]on,on,,der,rgycostofhorizontaland
anJournalofPhysiology,(145):391–401,1946.
[15]:
InternationalConferenceonAdvancedRobotics,July1997.
[16]esofPhysicalMedicine
andRehabilitation,51:423–426,1970.
[17]ingSurveys,6(1):57–97,1974.
[18],,-anglerelationshipatlowerlimbjointsduringhuman
lofElectromyographyandKinesiology,6(3):177–190,1996.
[19]n-WesleyPublishingCompany,Reading,
MA,1987.
[20]h
CongressoftheInternationalSocietyofBiomechanics,Tokyo,August1997.
[21]i,t,s-likebipedrobotparti:Stabilityandbifurcationof
calreport,INRIA,No.2996,Oct.1996.
[22]icalEngineering,3:119–122,1968.
[23]therapy,55:452–460,1969.
[24]-
icanJournalofPhysicalMedicine,59(4):165–183,1980.
[25]anJournalof
PhysicalMedicine,59(3):109–125,1980.
[26]&UniversityPressInc.,Oxford,UK,1994.
[27]Press,Cambridge,MA,1986.
[28]nsactionsonInformationTheory,
IT-8(8):179–187,1962.
23
GoswamiGaitparameterization...
[29]urnalof
BiomechanicalEngineering,116:30–36,1994.
[30]lu,an,tingjointkinematicsofhumanlocomotionusing
phaplaneportraitsandpoincar´lofBiomechanics,27(12):1495–1499,1994.
[31]lu,an,ticsanddynamicstabilityoflocomotionofpolio
urnalofBiomechanicalEngineering,118:405–411,1996.
[32]er-Verlag,Berlin,1995.
[33]ce-HallInternational,Inc.,EnglewoodCliffs,
N.J.,1989.
[34]nRecognition,24(8):801–806,
1991.
[35]ra,ro,alysisofslopewalking:astudyonsteplength,stride
width,timefactors,dicaOkayama,45(3):179–184,1991.
[36]ce-HallInternational,Inc.,EnglewoodCliffs,N.J.,1990.
[37]inofProstheticsRearch,
BPR10-15(spring):3–84,1971.
[38]nRecognition,24(8):807–813,1991.
[39]ansactionsPatternAnalysisandMachine
Intelligence,18(3):254–266,1996.
[40],,el,n,iagramsintheasssmentof
lJournal,47:951–957,1973.
[41]nation,n,g,,editors,
DifferingPerspectivesinMotorLearning,MemoryandControl,pages295–dam:North-Holland,
1985.
[42]h
InjuryPreventionThroughBiomechanicsSymposium,1995.
[43]nalysisandmathematicalmorphology:icpress,Paris,1982.
[44]o,ke,,ceofgeneralizedmotorprograms
lofMotorBehavior,13(1):33–47,1981.
[45]n,,is,,ticandplantarpressureadjustments
&Posture,1:172–179,1993.
[46]lofApplied
Physiology,15:759–763,1960.
[47],s,on,fluenceofsurfaceslopeonhumangaitcharacteris-
tics:mics,39(4):677–692,1996.
[48]ica,70(8):920–930,
1980.
[49]-
lished,1993.
[50],dt,ectsofuphillanddownhillwalkingonpelvicoscillations
mics,24(5):807–816,1981.
[51]lof
MotorBehavior,14(2):135–142,1982.
[52]to
MedicalJournal,41:51–62,1989.
[53]ki,,i,typedpatternoflowerlimbmovementduring
ofPhysiologicalAnthropology,3(4):291–296,1984.
[54]dexactcomputationofcartesiangeometricmomentsusingdiscrete
green’nRecognition,29(7):1061–1074,1996.
[55],shi,-organizationoflowerlimbmotioninhumanlocomotion.
JournalofRoboticsandMechatronics,8(4):364–371,1996.
[56],,ationand
Control,25:357–370,1974.
24
GoswamiGaitparameterization...
(a)
0.8
1
1.2
0
5
10
15
0.9
1
1.1
1.2
1.3
1.4
1.5
Normalizedperimeter
ratioofmaxandmin2ndmoments
C
y
cl
o
g
r
a
m
C
M
di
s
t
a
n
c
e
f
r
o
m
o
r
i
gi
n
−13
−8
−4
0
+4
+8
+13
(b)
0.2
0.4
0.6
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
Cyclogramarea
Cyclogramcircularity
C
y
cl
e
d
u
r
a
t
i
o
n
0
+4
−4
+8
−8
+13
−13
Figure17:Theevolutionofa)normalizedperimeter,theratioofmaximumandminimumcondmomentsandthedistanceofthe
cyclogramCMfromtheoriginandb)normalizedcyclogramarea,circularityandthenormalizedcycleduration,withrespecttoground
jectionofthecurveonthetwoverticalplanesareshownindashedlines.
25
GoswamiGaitparameterization...
0
00
(a)
0
0
0
(b)
0
0
(c)
0
0
(d)
−15−10−5051015
−2
−1.5
−1
−0.5
0
0.5
Groundslope(degree)
R
at
i
o
o
f
M
0
3
a
n
d
M
3
0
c
e
nt
r
al
m
o
m
e
nt
s
(e)
−15−10−5051015
−4
−2
0
2
4
6
8
Groundslope(degree)
R
at
i
o
of
M
1
2
a
n
d
M
2
1
c
e
nt
r
al
m
o
m
e
nt
s
(f)
Figure18:Evolutionoftheratioofe)andandf)rsmallercurvesa,b,c
anddshowtheevolutionoftheindividualcond-ordermoments,,and.
−15−10−5051015
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Groundslope(degree)
R
a
t
i
o
o
f
t
w
o
m
o
m
e
n
t
i
n
v
a
r
i
a
n
t
s
Figure19:Evolutionoftheratiooftwothird-ordermomentinvariantswithchangeingroundslope.
26
本文发布于:2022-11-14 13:40:04,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/17743.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |