首页 > 试题

与三角形有关的线段

更新时间:2023-01-30 13:45:32 阅读: 评论:0

初中作业太多要熬夜怎么办-时而造句


2023年1月30日发(作者:狐狸出装)

知识点总结

一、三角形的有关概念

1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定

性。

2.三角形中的三条重要线段:角平分线、中线、高

(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之

间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角

形的高。

说明:①三角形的角平分线、中线、高都是线段;

②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内

部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)

相交于一点。

二、三角形的边和角

三边关系:三角形中任意两边之和大于第三边。

由三边关系可以推出:三角形任意两边之差小于第三边。

三、三角形内、外角的关系

1.三角形的内角和等于180°。

~

2.直角三角形的两个锐角互余。

3.三角形的一外角等于和它不相邻的两个内角之和,三角形的一个外角大于任何一个和它不

相邻的内角。

4.三角形的外角和为360°。

四、等腰三角形与直角三角形:

1.等腰三角形:有两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰,

三条边都相等的三角形叫做等边三角形(或正三角形)。

!

说明:等边三角形是等腰三角形的特殊情况。

2.直角三角形:有一个角是直角的三角形是直角三角形,它的两个锐角互余。

五、三角形的分类:

六、三角形的面积:

~

1.一般计算公式

2.性质:等底等高的三角形面积相等。

常见考法

(1)考查三角形的性质和概念;(2)根据三角形内角和以及内、外角关系,给出已知两角,

来求第三个角;(3)根据三角形内、外角的关系,比较两角大小的;(4)利用三边关系判

断三条线段能否组成三角形或给出三角形的两边长,来确定第三边长的取值范围,亦或证明

线段之间的不等关系。

~

误区提醒

忽略构成三角形的条件。

【典型例题】(2010年山西)现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任

取三根木棒,能组成三角形的个数

为()

A.1个B.2个C.3个D.4个

【解析】选4cm,6cm,8cm可以组成1个,选6cm,8cm,10cm可以组成1个,选4cm,

8cm,10cm又可以组成1个,所以能组成的三角形个数为3个,故本题选C

-

一、全等图形、全等三角形:

1.全等图形:能够完全重合的两个图形就是全等图形。

2.全等图形的性质:全等多边形的对应边、对应角分别相等。

3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相

等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周

长,面积也都相等。

这里要注意:(1)周长相等的两个三角形,不一定全等;(2)面积相等的两个三角

形,也不一定全等。

二、全等三角形的判定:

1.一般三角形全等的判定

(1)边边边公理:三边对应相等的两个三角形全等(“边边边”或“SSS”)。

(2)边角公理:两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。

(3)角边角公理:两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“AS

A”)。

/

(4)角角边定理:有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。

2.直角三角形全等的判定

利用一般三角形全等的判定都能证明直角三角形全等.

斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”).

注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。

|

三、角平分线的性质及判定:

性质定理:角平分线上的点到该角两边的距离相等。

判定定理:到角的两边距离相等的点在该角的角平分线上。

四、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:

1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、

等腰三角形、等所隐含的边角关系);

2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系

从已知推导出要证明的问题)。

常见考法

(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于

另一条线段;③证明面积相等;

(2)利用判定公理来证明两个三角形全等;

(3)题目开放性问题,补全条件,使两个三角形全等。

误区提醒

(1)忽略题目中的隐含条件;

(2)不能正确使用判定公理。

本文发布于:2023-01-30 13:45:32,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/162369.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图