首页 > 试题

九年级数学上册

更新时间:2023-01-30 09:27:59 阅读: 评论:0

秒杀数学骗局-那儿拼音


2023年1月30日发(作者:外国文学研究)

第1页共6页

九年级上册数学知识点归纳

九年级上册数学知识点归纳一

圆的定义

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线局部。半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的根本性质

1、圆的对称性

(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:

平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的

一半。

(1)同弧所对的圆周角相等。

第2页共6页

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦

心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三

个点的距离相等。

(直角的外心就是斜边的中点。)

8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相

切;

直线与圆没有交点,直线与圆相离。

9、中,A(某1,y1)、B(某2,y2)。

10、圆的切线判定。

(1)d=r时,直线是圆的切线。

切点不明确:画垂直,证半径。

(2)经过半径的外端且与半径垂直的直线是圆的切线。

切点明确:连半径,证垂直。

11、圆的切线的性质(补充)。

(1)经过切点的直径一定垂直于切线。

(2)经过切点并且垂直于这条切线的直线一定经过圆心。

12、切线长定理。

(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这

个点到圆的切线长。

(2)切线长定理。

∵PA、PB切⊙O于点A、B

∴PA=PB,∠1=∠2。

第3页共6页

13、内切圆及有关计算。

(1)内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。

(2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。

求:AD、BE、CF的长。

分析:设AD=某,那么AD=AF=某,BD=BE=5-某,CE=CF=7-某.

可得方程:5-某+7-某=6,解得某=3

(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

求内切圆的半径r。

分析:先证得正方形ODCE,

得CD=CE=r

AD=AF=b-r,BE=BF=a-r

b-r+a-r=c

14、(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的

弦。

BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。

(2)相交弦定理。

圆的两条弦AB与CD相交于点P,那么PA?PB=PC?PD。

(3)切割线定理。

如图,PA切⊙O于点A,PBC是⊙O的割线,那么PA2=PB?PC。

(4)推论:如图,PAB、PCD是⊙O的割线,那么PA?PB=PC?PD。

15、圆与圆的位置关系。

(1)外离:d>r1+r2,交点有0个;

外切:d=r1+r2,交点有1个;

相交:r1-r2

内切:d=r1-r2,交点有1个;

内含:0≤d

(2)性质。

相交两圆的连心线垂直平分公共弦。

第4页共6页

相切两圆的连心线必经过切点。

16、圆中有关量的计算。

(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。

(2)扇形的面积用S表示。

(3)圆锥的侧面展开图是扇形。

r为底面圆的半径,a为母线长。

九年级上册数学知识点归纳二

1二次根式:形如式子为二次根式;

性质:是一个非负数;

2二次根式的乘除:

3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再

将被开方数相同的二次根式进行合并.

4海伦-秦九韶公式:,S是的面积,p为.

1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程.

2配方法:将方程的一边配成完全平方式,然后两边开方;

因式分解法:左边是两个因式的乘积,右边为零.

3一元二次方程在实际问题中的应用

4韦达定理:设是方程的两个根,那么有

1:一个图形绕某一点转动一个角度的图形变换

性质:对应点到中心的距离相等;

对应点与旋转中心所连的线段的夹角等于旋转角

旋转前后的图形全等.

2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,那么两个

图形关于这个点中心对称;

中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的

图形重合,那么说这个图形是中心对称图形;

3关于原点对称的点的坐标

1圆、圆心、半径、直径、圆弧、弦、半圆的定义

第5页共6页

2垂直于弦的直径

圆是图形,任何一条直径所在的直线都是它的对称轴;

垂直于弦的直径平分弦,并且平方弦所对的两条弧;

平分弦的直径垂直弦,并且平分弦所对的两条弧.

3弧、弦、圆心角

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.

4圆周角

在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心

角的一半;

半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径.

5点和圆的位置关系

点在圆外d>r

点在圆上d=r

点在圆内dR+r

外切d=R+r

相交R-r

九年级上册数学知识点归纳三

抛物线顶点坐标公式

y=a某2+b某+c(a=?0)的顶点坐标公式是(-b/2a,(4ac-b2)/4a)

y=a某2+b某的顶点坐标是(-b/2a,-b2/4a)

相关结论

过抛物线y^2=2p某(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于

A(某1,y1),B(某2,y2),有

①某1某2=p^2/4,y1y2=—P^2,要在直线过焦点时才能成立;

②焦点弦长:|AB|=某1+某2+P=2P/[(sinθ)^2];

③(1/|FA|)+(1/|FB|)=2/P;

④假设OA垂直OB那么AB过定点M(2P,0);

⑤焦半径:|FP|=某+p/2(抛物线上一点P到焦点F距离等于到准线L距

第6页共6页

离);

⑥弦长公式:AB=√(1+k^2)│某2-某1│;

⑦△=b^2-4ac;

⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距

离的比例中项;

⑨标准形式的抛物线在某0,y0点的切线就是:yy0=p(某+某0)。

⑴△=b^2-4ac>0有两个实数根;

⑵△=b^2-4ac=0有两个一样的实数根;

⑶△=b^2-4ac<0没实数根。

本文发布于:2023-01-30 09:27:59,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/161376.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:师德小结
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图