《画正多边形》教学设计【在线投稿】【信箱投稿(qqs18@)】【背景:字
号:大中小】教学目标:
(1)了解用量角器等分圆心角来等分圆;掌握用尺规作圆内接正方形和正六边形,能作圆
内接正八边形、正三角形、正十二边形;
(2)通过画图培养学生的画图能力;
(3)对学生进行审美教育,提高学生的审美能力,促进学生对几何学习的热情。
教学重点:
(1)量角器等分圆心角来等分圆;
(2)尺规作圆内接正方形和正六边形。
教学难点:
准确作图。
教学活动设计:
(一)提出问题:
由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必备能力之
一。
问题1:已知⊙O的半径为2cm,求作圆的内接正三角形。
教师组织学生进行,方法不限。
目的:充分发展学生的发散思维。
(二)解决问题:
以下为解决问题的参考方案:(上课时教师归纳学生的方法)
(1)度量法:①用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°。
②用量角器度量,使∠AOB=∠BOC=∠COA=120°。
(2)尺规法:(如上右图)用圆规在⊙O上截取长度等于半径(2cm)的弦,连结AB、BC、
CA即可。
(3)计算与尺规结合法:由正三角形的半径与边长的关系可得,正三角形的边长=R=2(cm),
用圆规在⊙O上截取长度为2(cm)的弦AB、AC,连结AB、BC、CA即可。
(三)研究、归纳
1.用量角器等分圆:
依据:等圆中相等的圆心角所对应的弧相等。
操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;
其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得
到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边
形的边长误差较大。
问题2:把半径为2cm⊙O九等份。
(先画半径2cm的圆,然后把360°的圆心角9等份,每一份40°)
归纳:用量角器等分圆,方法简便,可以把圆任意n等分,但有误差。
2.用尺规等分圆:
(1)问题3:作正四边形、正八边形。
教师组织学生,分析、作图。
归纳:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙
O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十
六边形、正三十二边形、正六十四边形……
(2)问题4:作正六、三、十二边形。
教师组织学生,分析、作图。
归纳:先作出正六边形,则可作正三角形,正十二边形,正二十四边形………理论上我们可
以一直画下去,但大家不难发现,随着边数的增加,正多边形越来越接近于圆,正多边形将
越来越难画。
(四)总结
(1)用量角器等分圆周作正n边形;
(2)用尺规作正方形及由此扩展作正八边形、用尺规作正六边形及由此扩展作正12边形、
正三角形。
(五)作业教材P173中13。
探究活动
图案设计
某学校在教学楼前的圆形广场中,准备建造一个花园,并在花园内分别种植牡丹、月季和杜
鹃三种花卉。为了美观,种植要求如下:
(1)种植4块面积相等的牡丹、4块面积相等的月季和一块杜鹃。(注意:面积相等必须由
数学知识作保证)
(2)花卉总面积等于广场面积。
(3)花园边界只能种植牡丹花,杜鹃花种植在花园中间且与牡丹花没有公共边。
请你设计种植方案:(设计的方案越多越好;不同的方案类型不同。)
本文发布于:2022-11-14 02:56:57,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/14928.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |