二重极限和二次极限
设,当时的极限是同时趋向于时所得到的.此外,我们
还要讨论先后相继地趋于时的极限;前者称为二重极限,后者称为二次极限.
若对任一固定的,当时,的极限存在
而在时的极限也存在并等于A,亦即,那末称A为先对、后对的
二次极限,记为
同样可定义先对、后对的二次极限
我们必须注意有以下几种情形:’
(1)两个二次极限都不存在而二重极限仍有可能存在.例如
由于和在和的函数极限不存在,故在(o,o)点的两个二次极限都不存在,但
因为,
故
(2)两个二次极限存在而不相等.例如
由于时恒有·,
故
同理
(3)两个二次极限存在且相等,但二重极限仍可能不存在。例如
当时,二重极限不存在,但两个二次极限都为零.
由此可知二次极限存在与否和二重极限存在与否,二者之问没有什么关系.但可以证明:若某个二次极
限和二重极限都存在,则二者一定相等,因之若两个二次极限存在而不相等,则二重极限一定不存在.又,
若两个二次极限存在并且相等,即若
我们说二次极限可以交换求极限的次序.
还应当注意,当时,的二重极限如果是A,则意味着P以任何方式(而不仅仅是任何方
向)趋于时,均趋于A,假若P仅从任何方向(而不是任何方式)趋于时,都趋于数A,的
二重极限仍可能不存在.例如函数
便是如此.点以任何方向趋于点时,读者可以验证,均趋于零,但当点户沿曲线
趋于时显然趋于1,故当时,的二重极限不存在.这正如有人所说,“从
一元函数转换到多元函豢时,是会出现某些在原则上是新的东西的”.其所以如此,在于高维空间几何性质
的复杂性.
本文发布于:2022-11-14 02:12:06,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/14786.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |