C'=0(C为常数函数);
(x^n)'=nx^(n-1)(n∈Q*);熟记1/X的导数
(sinx)'=cosx;
(cosx)'=-sinx;
(tanx)'=1/(cosx)^2=(cx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(cx)'=tanx·cx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arccx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
(sinhx)'=hcoshx
(coshx)'=-hsinhx
(tanhx)'=1/(coshx)^2=(chx)^2
(coth)'=-1/(sinhx)^2=-(cschx)^2
(chx)'=-tanhx·chx
(cschx)'=-cothx·cschx
(arsinhx)'=1/(x^2+1)^1/2
(arcoshx)'=1/(x^2-1)^1/2
(artanhx)'=1/(x^2-1)(|x|<1)
(arcothx)'=1/(x^2-1)(|x|>1)
(archx)'=1/(x(1-x^2)^1/2)
(arcschx)'=1/(x(1+x^2)^1/2)
(e^x)'=e^x;
(a^x)'=a^xlna(ln为自然对数)
(Inx)'=1/x(ln为自然对数)
(logax)'=(xlna)^(-1),(a>0且a不等于1)(x^1/2)'=[2(x^1/2)]^(-1)
(1/x)'=-x^(-2)
.y=c(c为常数)y'=0
.y=x^ny'=nx^(n-1)
.y=a^xy'=a^xlna
y=e^xy'=e^x
y=lnxy'=1/x
.y=sinxy'=cosx
.y=cosxy'=-sinx
.y=tanxy'=1/cos^2x
.y=cotxy'=-1/sin^2x
.y=arcsinxy'=1/√1-x^2
.y=arccosxy'=-1/√1-x^2
.y=arctanxy'=1/1+x^2
.y=arccotxy'=-1/1+x^2
按照公式代就行了
y=f(x)=c(c为常数),则f'(x)=0
f(x)=x^n(n不等于0)f'(x)=nx^(n-1)(x^n表示x的n次方)f(x)=sinx
f'(x)=cosx
f(x)=cosxf'(x)=-sinx
f(x)=a^xf'(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^xf'(x)=e^x
f(x)=logaXf'(x)=1/xlna(a>0且a不等于1,x>0)f(x)=lnxf'(x)=1/x
(x>0)
f(x)=tanxf'(x)=1/cos^2x
f(x)=cotxf'(x)=-1/sin^2x
导数运算法则如下
(f(x)+/-g(x))'=f'(x)+/-g'(x)
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2
本文发布于:2023-01-24 19:53:36,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/129067.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |