正态分布(Normaldistribution)
又名高斯分布(Gaussiandistribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大
的影响力。若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值
μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分
布是μ=0,σ=1的正态分布。
简介
定义:若随机变量服从一个位置参数为、尺度参数为的概率分布,且其概率密度函数为
则这个随机变量就称为正态随机变量,正态随机变量服从的分布就称为正态分布,记作,读作服从
,或服从正态分布。
当时,正态分布就成为标准正态分布
正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。
正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。
正态分布
正态分布一种概率分布,也称“常态分布”。正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从
正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ^2)。服从正态分布的随机变量的
概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。
正态分布的密度函数的特点是:关于μ对称,并在μ处取最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点,形状
呈现中间高两边低,图像是一条位于x轴上方的钟形曲线。当μ=0,σ^2=1时,称为标准正态分布,记为N(0,1)。μ维随机向
量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态
分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯
和高斯研究了它的性质。[1]
正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。
t分布
又称Studentt分布,记作t~t(v)。t分布十分有用,它是总体均数的区间估计和假设检验的理论基础。
简介
u分布
正态分布(normaldistribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。正态分布有两个参数,μ和σ,
决定了正态分布的位置和形态。为了应用方便,常将一般的正态变量X通过u变换[(X-μ)/σ]转化成标准正态变量u,以使原来各种
形态的正态分布都转换为μ=0,σ=1的标准正态分布(standardnormaldistribution),亦称u分布。
根据中心极限定理,通过上述的抽样模拟试验表明,在正态分布总体中以固定n,抽取若干个样本时,样本均数的分布仍服从正态分
布,即N(μ,σ)。所以,对样本均数的分布进行u变换,也可变换为标准正态分布N(0,1)
t分布
由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t值的分布称为t分布。
假设X服从标准正态分布N(0,1),Y服从χ2(n)分布,那么Z=X/sqrt(Y/n)的分布称为自由度为n的t分布,记为Z~t(n)。
2特征
1.以0为中心,左右对称的单峰分布;
2.t分布是一簇曲线,其形态变化与n(确切地说与自由度ν)大小有关。自由度ν越小,t分布曲线越低平;自由度ν越大,t分布
曲线越接近标准正态分布(u分布)曲线,如图.
t(n)分布与标准正态N(0,1)的密度函数
对应于每一个自由度ν,就有一条t分布曲线,每条曲线都有其曲线下统计量t的分布规律,计算较复杂。
学生的t分布(或也t分布),在概率统计中,在置信区间估计、显著性检验等问题的计算中发挥重要作用。
t分布是由统计学家哥赛特于1908年首次出版,而他在工作健力士啤酒厂在都柏林。他被禁止以他个人的名义出版,因此,该文件是
根据书面笔名学生"student"。因此t分布又称为学生分布。
t分布情况出现时(如在几乎所有实际的统计工作)的总体标准偏差是未知的,并要从数据估算。教科书问题的处理标准偏差,因为
如果它被称为是两类:(1)那些在该样本规模是如此之大的一个可处理的数据为基础估计的差异,就好像它是一定的(2)这些
说明数学推理,在其中的问题,估计标准偏差是暂时忽略的,因为这不是一点,这是作者或导师当时的解释。
t分布的概述及其历史
学生t-分布可简称为t分布。其推导由威廉·戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人
的名义发表,所以论文使用了学生(Student)这一笔名。之后t检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此
分布称为学生分布。
F分布
F分布是1924年英国统计学家提出,并以其姓氏的第一个字母命名的。
F分布定义为:设X、Y为两个独立的随机变量,X服从自由度为k1的卡方分布,Y服从自由度为k2的卡方
分布,这2个独立的卡方分布被各自的自由度除以后的比率这一统计量的分布。即:上式F服从第一自由度为k1,
第二自由度为k2的F分布
F分布的性质
1、它是一种非对称分布;
2、它有两个自由度,即n1-1和n2-1,相应的分布记为F(n1–1,n2-1),n1–1通常称为分子自由度,
n2-1通常称为分母自由度;
3、F分布是一个以自由度n1–1和n2-1为参数的分布族,不同的自由度决定了F分布的形状。
4、F分布的倒数性质:Fα,df1,df2=1/F1-α,df1,df2
本文发布于:2022-11-13 18:03:35,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/12479.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |