首页 > 试题

七年级数学课件

更新时间:2023-01-22 01:19:01 阅读: 评论:0

赠送的课时可以退吗-填关联词


2023年1月22日发(作者:鼓励自己工作的话)

七年级上册数学复习课件

七年级上册数学复习课件

说起数学,大概是很多同学的头疼问题,但是只要到坚持总会有

办法的,所以小编今天为大家分享的内容是七年级上册数学复习课件,

请看看吧。

七年级上册数学复习课件

第一章丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立

体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面

图形。

2、点、线、面、体

(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、常见的几何体及其特点

长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形

是特殊的长方形),正方体是特殊的长方体。

棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是

四棱柱。

棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。

圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的

圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是

圆。

球:由一个面(曲面)围成的几何体

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧

棱;2n个顶点。

5、正方体的平面展开图:11种

6、截一个正方体:

(1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,

五边形,六边形。

注意:①、正方体只有六个面,所以截面最多有六条边,即截面边

数最多的图形是六边形.

②、长方体、棱柱的截面与正方体的截面有相似之处.

(2)用平面截圆柱体,可能出现以下的几种情况.

(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截

面,初中不予研究)

(4)用平面去截球体,只能出现一种形状的截面--圆.

(5)需要记住的要点:

几何体截面形状

正方体三角形、正方形、长方形、梯形、五边形、六边形

圆柱圆、长方形、(正方形)、……

圆锥圆、三角形、……

球圆

7、三视图

物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

第二章有理数及其运算

1、有理数的概念及分类

①②

整数和分数统称为有理数。

注意:因为有限小数和无限循环小数可以化为分数,所以把有限小

数和无限循环小数都看作分数.

2、数轴:

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注

意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一

个点来表示。

3、相反数:

只有符号不同的两个数叫做互为相反数,零的相反数是零。

注意:①在数轴上,表示互为相反数的两个点,位于原点的两侧,

且与原点的距离相等.

②相反数是成对出现的,不能单独存在,单独的一个数不能说是

相反数。

4、绝对值:

(1)在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对

值。(|a|≥0)。0和正数的绝对值等于它本身,负数的绝对值等于它的

相反数。

零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若

|a|=-a,则a≤0。

也可表示为:

;

绝对值的问题经常分类讨论;

(2)绝对值的有关性质

①对任意有理数a,都有|a|≥0;

②若|a|=0,则a=0;

③若|a|=|b|,则a=b或a=-b;

④若|a|=b(b>0),则a=±b;

⑤若|a|+|b|=0,则a=0且b=0;

⑥对任意有理数a,都有|a|=|-a|.

5、有理数大小的比较法则:

在数轴上表示的两个数,右边的数总比左边的数大(大数-小数>0,

即右边的数-左边的数>0);

正数都大于0,负数都小于0,正数大于一切负数;

两个负数,绝对值大的反而小.

6、倒数:

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的

数是1和-1。零没有倒数。正数的倒数是正数,负数的倒数是负数。

倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的

倒数,如a≠0,a的倒数为.

7、有理数加法法则:

①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较

大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数同0相加,仍得这个数。

一些巧算方法:a、互为相反的两个数,可以先相加;b、符号相同的

数,可以先相加;c、分母相同的数,可以先相加;d、几个数相加能得到

整数,可以先相加。

8、有理数减法法则:

减去一个数,等于加上这个数的相反数。

有理数的加减法混合运算的步骤:

①写成省略加号的代数和。在一个算式中,若有减法,应由有理

数的减法法则转化为加法,然后再省略加号和括号;

②可以利用加法则,加法交换律、结合律简化计算。

9、有理数乘法法则:

①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘,积仍为0。

如果两个数互为倒数,则它们的乘积为1。(如:-2与、…等)

乘法的交换律、结合律、分配律在有理数运算中同样适用。

有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的

积。

10、有理数除法法则:

①两个有理数相除,同号得正,异号得负,并把绝对值相除。

②除以一个数等于乘以这个数的倒数。

0除以任何非0的数都得0。0不可作为除数,否则无意义。

11、乘方的概念

(1)求几个相同因数的积的运算,叫做乘方,即

在中,a叫做底数,n叫做指数,叫做幂.

(2)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;

(3)据规律底数的小数点移动一位,平方数的小数点移动二位.

注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负

数或分数时,要先用括号将底数括上,再在右上角写指数。

(4)乘方的运算性质:

①正数的任何次幂都是正数;

②负数的奇次幂是负数,负数的偶次幂是正数;

③任何数的偶数次幂都是非负数;

④(除0以外任何数的0次方都得1)1的任何次幂都得1,0的任

何次幂(除0次)都得0;

⑤-1的偶次幂得1;-1的奇次幂得-1;

⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

12、有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里

面的。

运算律

加法交换律

加法结合律

乘法交换律

乘法结合律

乘法对加法的分配律

第三章整式的加减

1、代数式

字母可以表示任何数。

用运算符号把数或表示数的字母连接而成的式子叫做代数式。单

独的一个数或一个字母也是代数式。

规定:单独的一个数字或字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不

是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实

际问题的要符合实际问题的意义。

代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,

如应写作;

④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般按照分数的写法来写,如

4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数

式括起来,再将单位名称写在式子的后面,如平方米

2、单项式

由数与字母或字母与字母相乘组成的代数式叫做单项式。单独一

个数或一个字母也叫单项式。

(1)单项式中的数字因数叫做单项式的系数.

(2)如果只是一个数字,系数是本身

(3)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式

的次数。

(4)单独一个非零数的次数是零。

3、多项式

几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫

做常数项.一个多项式有几项就叫做几项式。

多项式中,次数最高的项的次数,就是这个多项式的次数.一般说

几次几项式。

4、整式

单项式和多项式统称为整式。整式是代数式的一部分,在代数式

中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。

5、同类项

所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

注意:①两个相同:字母相同;相同字母的指数相等.②两个无关:与系

数无关;与字母顺序无关.

3、合并同类项

把几个同类项合并成一项,叫做合并同类项。

合并同类项法则:

(1)找同类项

(2)合并①各同类项的系数相加作为新的系数,②字母以及字母的

指数不变

(3)不同种的同类项间,用“+”号连接

(4)没有同类项的项,连同前面的符号一起照抄

4、去括号法则

(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里

各项的符号都不改变。

(2)括号前是“﹣”,把括号和它前面的“﹣”号去掉后,原括号

里各项的符号都要改变。

5、整式的运算:

整式的加减法:(1)去括号;(2)合并同类项。

6、代数式求值------------用数值代替字母,按照代数式指明的

运算进行计算

化简,求值------------①先化为最简的代数式;②再用数值代替字

母,按照代数式指明的运算进行计算

第四章基本平面图形

1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段

有两个端点。

2、射线:将线段向一个方向无限延长就形成了射线。射线有一个

端点。

3、直线:将线段向两个方向无限延长就形成了直线。直线没有端

点。

4、点、直线、射线和线段的表示

在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示。

一条直线可以用一个小写字母表示或用直线上两个点的大写字母

表示。

一条射线可以用一个小写字母表示或用端点和射线上另一点来表

示(端点字母写在前面)。

一条线段可以用一个小写字母表示或用它的端点的两个大写字母

来表示。

5、点和直线的位置关系有两种:

①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

6、直线的性质

(1)直线公理:经过两个点有且只有一条直线(两点确定一条直线)。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较

大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

7、线段的性质

(1)线段公理:两点之间的所有连线中,线段最短。

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(补充类比:①点到直线的距离:点到直线垂线段的长;②平行线间的

距离:平行线间垂线段的长)

(3)线段的中点到两端点的距离相等。(点M把线段AB分成相等的

两条相等的线段AM与BM,点M叫做线段AB的中点。)

(4)线段的大小关系和它们的'长度的大小关系是一致的。

8、角:

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点

叫做这个角的顶点,这两条射线叫做这个角的边。

或:角也可以看成是一条射线绕着它的端点旋转而成的。

9、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一

条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合

时,所形成的角叫做周角。

10、角的表示

角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的

角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE

等。

注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,

边上的字母写在两侧。

11、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,

单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”

直角三角板(45,45,90),(30,60,90)可画出的角除以上角,还有

15,75,105,120,135,150这些角都是15的倍数。

12、角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小

有关。

(2)角的大小可以度量,可以比较

(3)角可以参与运算。

时针问题:

时针每小时300,每分钟0.50;分针每分钟60;时针与分针每分钟

差5.50.

时针与分针夹角=分×5.50-时×300(分针靠近12点)

时针与分针夹角=时×300-分×5.50(时针靠近12点)

若结果大于1800,另一角度用3600减这个角度。

经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、

在一条线上的时间减去现在的时间。追及问题还可用追及度数/5.5。

13、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,

这条射线叫做这个角的平分线。

14、多边形

由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图

形,叫做多边形。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶

点,可以把这个n边形分割成(n-2)个三角形。n边形内角和等于(n-

2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个

内角都等于(n-2)×1800/n

过n边形一个顶点有(n-3)条对角线,n边形共(n-3)×n/2条对角

线.

15、圆、弧、扇形

圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形

成的图形叫做圆。固定的端点称为圆心

弧:圆上A、B两点之间的部分叫做圆弧,简称弧。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做

扇形。

圆心角:顶点在圆心的角叫圆心角。

第五章一元一次方程

1、方程

含有未知数的等式叫做方程。

2、方程的解

能使方程左右两边相等的未知数的值叫做方程的解。

3、等式的性质

(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等

式。

(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所

得结果仍是等式。

4、一元一次方程

只含有一个未知数,并且未知数的指数都是1的(整式)方程叫做一

元一次方程。

5、解一元一次方程的一般步骤:

(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方

程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数

的系数化为1。

6、列一元一次方程解应用题步骤:

找等量关系,设未知数,列方程,解方程,检验解的正确性,作

出回答

7、找等量的方法:

(1)读题分析法:…………多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,

是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字

列等量关系式。

(2)画图分析法:…………多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读

题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图

形找等量关系是解决问题的关键。

(3)常用公式也可作为等量关系

8、列方程解应用题的常用公式:

(1)行程问题:距离=速度×时间;

(2)工程问题:工作量=工效×工时;

(3)比率问题:部分=全体×比率;

(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水

速度-水流速度;

(5)商品价格问题:售价=定价×折×,售价=进价×(1+提高

率),利润=售价-成本,利润=利润率×成本;

(6)本息和=本金+利息,利息=本金×利率×期数

(7)原量×(1+增长率)=现量;原量×(1-下降率)=现量(只有1次

增减)

(8)周长、面积、体积问题:

C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正

方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方

体=a3,V圆柱=πR2h,V圆锥=πR2h.

第六章数据的收集与整理

1、普查和抽样调查

(1)从事一个统计活动大致要经历确定任务,收集数据,整理数据

等过程。

我们经常通过调查、试验等方式获得数据信息。项目很大时,还

可以通过查阅报纸、相关文献或上网的方式。

(2)为某一特定目的而对所有考察对象进行的全面调查叫做普查。

所要考察的对象的全体称为总体。

组成总体的每一个考察对象称为个体。

(3)①总体的个数数目较多,普查的工作量较大;②有时受客观条件

的限制,无法对所有个体进行普查;③有时调查具有破坏性,不允许普

查。

人们往往从总体中抽取部分个体进行调查,这种调查称为抽样调

查。

抽样调查时,从总体中抽取的一部分个体叫做总体的一个样本。

样本容量:样本含有个体的数目。

(4)随机调查,就是按机会均等的原则进行调查,即总体中每个个

体被选中的可能性都相等。随机调查不是调查方法。

(5)抽样调查的优点是调查范围小,节省时间、人力、物力和财力。

缺点是调查结果往往不如普查得到的结果准确。抽样时要注意样本的

代表性和广泛性(随机性,真实性)。

2、扇形统计图及其画法:

(1)扇形统计图:利用圆与扇形来表示总体与部分的关系,即圆代表

总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映

部分占总体的百分比的大小,这样的统计图叫做扇形统计图。

(2)画法:

①计算不同部分占总体的百分比:各项数量/总数×100%。(在扇

形中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数

与360的比圆心角度数/3600×100%)。

②计算各个扇形的圆心角(顶点在圆心的角叫做圆心角)的度数。圆

心角度数=3600×百分比

③在圆中画出各个扇形,并标上百分比。

3、频数分布直方图

(1)频数分布直方图是一种特殊的条形统计图,它将统计对象的数

据进行了分组,画在横轴上,纵轴表示各组的频数。

如果样本中数据较多,数据的差也比较大时,频数分布直方图能

更清晰、更直观地反映数据的整体状况。

(2)频数分布直方图的制作步骤:

①找出所有数据中的最大值和最小值,并算出它们的差(极差)。

②决定组距和组数(组数:把全体样本分成的组的个数称为组数,当

数据在50~100之间时,分组的数量在5-12之间较为适宜;组距:把所

有数据分成若干个组,每个小组的两个端点的距离〈注意分点归属问

题〉。)

③确定分点

④列出频数分布表.

⑤画频数分布直方图.

(3)条形图和直方图的区别

①条形图是用条形的高度表示频数的大小,而直方图实际上是用

长方形的面积表示频数,当长方形的宽相等的时候,把组距看成“1”,

用矩形的的高表示频数;

②条形图中,横轴上的数据是孤立的,是一个具体的数据,而直

方图中,横轴上的数据是连续的,是一个范围;

③条形图中,各长方形之间有空隙,而直方图中,各长方形是靠

在一起的,中间无空隙。

4、各种统计图的优缺点

①条形统计图:能清楚地表示出每个项目的具体数目。

②折线统计图:能清楚地反映事物的变化情况。

③扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

为了较直观比较直观地表达两个统计量的变化速度绘制折线统计

图时应注意纵、横坐标同一单位长度所表示的量一定要一致。

为了较直观地反映几个统计量之间的比例关系绘制条形统计图时

应注意纵轴从0开始。

本文发布于:2023-01-22 01:19:01,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/111332.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图