m第一童理解乐高中的几何学
乐高积木的几何原理:我看到过很多同学刚刚设计机器人小车,他们首先会选择最有
用的少许积木把小车搭好,兴致勃勃地编写好程序、下载,可是一松手,小车散了……但
这并不影响他们的热情,他们会不停地改进,直到小车能轻松跑完全程……在这个过程中,
他们已经开始根据乐高积木的各种特点,运用结构、机械原理来完善模型的结构,虽然他
们并不是很清楚乐高积木的何学原理,也没有被指导过怎么做。
乐高积木为什么能够很紧密地接合在一起?能完美地实现实验仿真?这不仅在于它
有两千多个各种形状的积木组件,有足够的零件让你完成你的设想,更重要的是,这些积
木组件都按同一标准严格设计、生产,所有积木都是可兼容的。它依据的标准就是乐高单
位,而且积木有严格的质量保持,乐高积木模具公差仅为0.000005米。怎样巧妙地利用
乐高积木的特点-----------------------------------梁、块、板和孔之间的关
系——完善你的结构,完成你独一无二的设计?
本章包含的内容:
T尺寸和单位的表示
T方形的乐高世界
二垂直支撑
T倾斜的乐高世界
T斜支撑
T水平方向的尺寸和单位的表示
铰链的支撑
1.1简介
在你进入乐高机器人世界之前,希望你能先掌握那些乐高积木中涉及的基本几何学原
理。不用担心,我们并不是要对你进行复杂的方程式和三角法则的测试,仅讨论一些非常
简单的概念和解释一些常用的术语,这样,在入门阶段就可以更
容易地搭建出实际的模型。在本章,你将会发现乐高爱好者使用什么单位来表示尺寸,如
何来表示积木的面积,如何将积木从不同的方位连接组合起来。
我们鼓励你使用手里的乐高组件对照本章的例子自己搭建一遍。把机器人套装放在手边,以便随
时挑选必要的积木,不过这一章节中的例子多数都只用到一些块和板。
如果由于某种原因,这部分材料对你来说过于复杂,你不必强求自己掌握,可以跳过这一章直接
进入到其它部分。在你需要的时候,你都可以回过来将这一章节当作术语表来使用。
1.2尺寸和单位
乐高爱好者通常按顺序用3个数字表示乐高积木的尺寸:宽度、长度和厚度。使用乐
高积木的一般方法是:“嵌入式“,当表示积木的尺寸时,都要考虑这种方位,不论是将
积木颠倒还是在3维空间旋转。
高度是识别积木的最基本的属性,它是指积木的底部到顶部之间的距离。宽度按照我
们习惯指的是水平方向上的两个尺寸中较短的一个(长度就是另外一个)。长度和宽度的
表示单位是用“凸点”来表述的,也叫作“乐高单位”。这样,我们可以描述绝大多数积
木的尺寸。乐高单位在1949年第一次被使用,是
一个2??的积木块(如图1所示)。
也可以不用乐高单位来表示乐高积木的尺寸,而采用公制(米制)单位,两个突点圆
心间的宽度相当于8mm—块积木的厚度(不包括突点的高度)相当于9.6mm能否记住这些
数据并不重要——重要的是要知道它们有不同的数值,也就是说你需要两个不同的单位来
标注高度和长度。它们之间的数值比就相当重要
了:9.6除8得1.2(垂直方向的单位长度是水平方向的单位长度的1.2倍。这
个比值很容易记住,如果换算成整数比就是6:5。在下一章节我们将会研究这一比值的关
联。
图1.1一块乐高积木砖的尺寸
图1.2显示的是最小的乐高积木砖,用乐高单位来表示是1??。实际上这个乐高立方体”根本
不是立方体。
图1.2尺寸为111的乐高积木砖的比例关系
在乐高组件中,有一类积木的厚度是块状积木厚度1/3。其中最重要的组件就是“板”,
这些板中大多数是矩形,少数具有特殊形状。将3块板叠在一起,它的厚度就相当于一块标
准的积木块的厚度(见图1.3)。
图1.3三块板的高度等于一块砖的高度
1.3方形的乐高世界:垂直的支撑
我们为什么要关心这些关系呢?要回答这个问题,就要追溯到70多年前,
乐高TECHNIC生产线刚刚诞生的时候。从那时起,就设计和使用乐高来搭建由水平层组成的
物体:把积木砖和板恰当的组合到一起。每个孩子都会很快知道3
块板的厚度等于1块砖的厚度,这也是他们所需要知道的全部东西。但是在1977年,乐高
决定以年龄更大的顾客为对象,引进一系列新的生产线:LEGOTECHNIC它们共同的特点是带
孔的1蚇的积木块,我们称之为TECHNICS木块,或者叫作梁(图1.4)。这些孔可以让轴
穿过,也可以通过销子将梁互相连接起来,这样就创造了一个完美的乐高世界。
图1.4乐高LEGOTECHN梁
假设你要在垂直位置装一根梁,用来支撑两层或者更多层的水平位置的梁:这里我们必
须记住6:5这个比值。梁上的孔与凸点一样都以相同的间距排列,但它们与凸点是以半个
凸点间距交错排列的。这样,当我们把两根梁嵌在一起,水平方向两孔的间距不等于垂直方
向两孔的间距,从而,不同层面上的孔就不能
与之配合。换句话说,由于6:5的尺寸关系,一根垂直的梁上的孔不能够与一叠嵌在一起的
梁上的孔相配合。至少不是所有的孔都能吻合。但让我们仔细观察一下:用6的倍数(6、
12、18、24、30……)来计算垂直方向的单位,并用5的倍数(5、10、15、20、25……)
来统计水平方向的单位。不要数开始的积木和开始的孔,因为它们是你的参照点;你测量的
就是距离这个点的长度。当你数到5个垂直单位的长度达到了30,当你数到6个水平方向单
位,长度也达到了相同的数值(见图1.5)。
从中我们得到了一个定理:在叠嵌在一起的梁中,第5根梁的孔是和与之正交的垂直的梁上的孔
重合的
图1.5水平的梁与垂直的梁的配合
现在你可以用梁搭建一堵墙,然后用一根长的梁来固定它,从而实际验证这个规则。如
果你把一根轴放进第一个连通的孔中,然后试图将第二根轴放进接下去的孔里,你会发现
在开始的积木上加上5根梁和10根梁,交叉的梁上的孔才是连通的(见图1.6)。
这种交叉的梁的技巧是非常重要的。它可以使我们搭建出坚固的模型,垂直的梁将与之
连接的两根水平梁之间的积木锁住。遗憾的是需要将6根梁搭建在一起,才能用一根横贯的
梁将它们锁住。是否可以采用其它更好的方法呢?记得垂直单位有一个子单位一一乐高板的
高度。3块板组成一块砖,我们可以这样计算板的高度。高度以2个单位的倍数而不是6个
单位(2是6的1/3)。高度的级数就变为2、4、6、810。5块垂直的板的高度就为10。
这个高度值刚好等于水平方向上孔的间距,因此我们的最后得出的结论是:每5块板的高度,
垂直梁的孔刚好可以配合。
图1.65块梁的高度刚好与孔配合
不幸的是,板不能用于连接垂直梁,原因十分简单,板没有孔!但是一根梁与3块板的高度是一
样的,知道这些,我们就可以在计算上做如下规定:从梁的底部开始,每加一块板就增加一个单
位,每加一块梁增加3个单位,并要保证至少一根梁在顶部,如果结果是5的倍数,孔就能与垂
直梁配合。
最简洁的设计如图1.17所示用一根垂直梁固定水平层:一根梁和两块板的高度相当于5块板。
连接垂直梁的唯一方法就是使用5块板产生两孔的距离。在乐高工程师设计的模型中都使用这种
方法。
图1.17最紧凑的固定结构
随着连接距离的增加,连接的方式也增多了,下一步就是连接10块板的
高度,可以有许多方法。如图1.18
图1.8标准栅格结构
图1.18c中所示的连接是比较常用的,它是基于图1.7中的设计结构的。因为在中间位置固定了
梁,当你搭建模型时,1块梁+2块板+1块梁+2块板的连接方式可以让你搭建更牢固:间隔一个孔连接,在EricBrok
的网站上称它为标准结构(见附录A),它可以使连接最优化。
你一定要局限于使用这种连接方式吗?不要约束自己的想象力!这只是一些小技巧,在许多情况
下,特别是当你不知道如何去做时,这些技巧对你很有用。在很多应用中我们使用了不同的设计
结构,对你同样也同样有帮助。
1.4倾斜乐高世界一一斜支撑
乐高梁是不是只能垂直连接呢?乐高最大的特点是搭建方形的物体,但斜连
接同样可以,它可以使我们的世界更加丰富多彩,同时又提供了一个有力的解决问题的工具。
你现在知道如何用一根垂直梁去连接一堆梁和板,而且你也知道了它们的数字关系。但如何用一
根斜梁支撑水平梁?这根斜梁看起来就像直角三角形的斜边。搭建一个如图1.9所示的模型,现
在测量它们的各边,记住不要去计算第一个孔,因为我们是根据孔之间的距离来测量长度的,三
角形的底边有6个孔,高度有8个孔:记住在标准结构中它们间的距离为底部的梁到上面的梁两孔间的距离(在
图中我们放置了一根垂直梁,帮助你计算孔的数量。直角三角形的斜边长度为
10个孔)。
在这里我们介绍一下由古希腊哲学家、数学家毕达哥加斯加创建的勾股定理,这是一个非常著名
的数学定理。定理证明了直角三角形的直角边与斜边的数学关系,假设组成直角的两边称为A、
10块板/4孔的间距,但连接同样
0(X1
B,三角形斜边为G它们间的关系就是:
22
A+B=C
现在我们将数字代入上面的公式得到:
22
6+82=10
将上式展开:
(6R6)+(8R8)=(10R10)36+64=100
100=100
图1.9勾股定理的应用
值得肯定的是,这个例子不是偶然的,而是应用了勾股定理,逆用这个定理,如果知道底边和高
度的值,就可以算岀斜边的值。只有当两个数字的平方和刚好等于另一个数字的平方时,公式才
成立,如表1.1所示:
A(底边)
B(高)ARABRB
22
A2+B2说明
56253661
不成立
3896473不成立
3491625成立,25=5X5
也成立,虽然289=17X17,它可以得岀一
个大的三角形
988164145
145不是整数的平方,但它接近144
(12R12),因为梁的配合允许有1%
的误差,所以斜梁也可以配合。
现在,你可能会问,在玩积木时,是否要在桌上放一个小计算器,而且还需要重心温习一下高中
数学?其实你不必担心。因为:你不会经常使用斜梁。而最常用的三角形连接都是基于3-4-5
三条边长的(如表1.1第三行),如果将三角形各边长同时扩大一个整数倍,又会得到一个有效的3
边长。如扩大2倍得到:6-8-10,扩大3倍得到:9-12-15等等。这些都是有用并且是很容易记住的边长。
我们在附录B中提供了包含许多实用的边长列表,还有一些等式虽不成立但非常接近正确的数值,可以配合得很
好,而不会对积木块引起任何的损坏。
我们建议你花一些时间研究三角形,试着使用一下使用不同边长的连接方式来检验它的刚度。这
些知识对你以后搭建复杂的模型是非常有用的。
1.5水平尺寸和单位的表示
到现在为止,我们一直都在讨论垂直平面,因为使用垂直梁来固定层的技术对搭建出坚固的
模型是非常重要的,当然坚固的模型是塑料的。在水平方向上使用积木还有非常有效的方法,那
就是:连接凸点。
前面介绍过,测量长度的单位是凸点,也就是说,只要数岀积木的凸点数,就能计算积木的长度。梁上的
孔都以相同间距排列,实际上,3个凸点的长度与3个孔的长度是相等的。观察梁,
会注意到孔与凸点是交错排列的,每个梁上的孔总比凸点少一个。但也有两种例外:带1孔的1X1
梁,带两孔的1X2的梁(如图1.10),机器人套装中没有这两种积木,但它们是很有用的。
图1.11带1孔的1X1梁和带两孔的1X2的梁
在这些短梁中,孑L刚好排列在凸点下,而不在它们之间,而且当与标准梁一起使用时,可以
得到半个孔的增量(如图1.11)。在下一章讲到齿轮时将会看到这两种梁的实际应用。
图1.11得到半个孔的间距
还有一种可以实现同样功能的积木,即带一个凸点的1X2的板。在机器人套装中也没
有这个积木块,但也很容易找到。如图1.12所示,调整半个凸点的距离时是很有用的。在
模型中,这有助于调整触动传感器的位置,我们在这本书中将会看到一些这方面的实例。
图1.12单凸点1X2的板
1.6铰链支撑
在结束本章之前,我们再回到三角形支撑,你现在拥有了可以轻易解决问题的全部工具了。这里也没有新
的内容,只是前面理论的不同应用。这项技术你可能用不到,但为了完善起见,我
们这里合仍介绍一下。
首先需要介绍一个特殊的部件:铰链(如图1.13)。使用这种铰链能搭建许多不同的三角形,
但还是针对直角三角形的,因为它们是到目前为止最有用的三角形连接部件。铰链的两端可以与
板或梁的上下层连接,同时提供了许多与其它结构整合的方法。
图1.13乐高铰链
乐高铰链可以旋转连接的梁,保证它们的内角始终接触。因此,使用3个铰链,就能得到一个三
角形,它的垂直边集中在铰链的旋转中心上,内部边长就等于梁的长度(如图1.14)。关于直
角三角形,你已对勾股定理比较熟悉了,它也同样可以应用在这里,我们已经看到的相同的连接
在这里也成立:3-4-5,6-8-10等等。
图1.14使用铰链组成直角三角形
小结:
你学过几何学吗?假如对基础熟悉,学起来就不会困难了。首先,它有助于根据它们之间的
比例去确定积木块,通过凸点计算它们的长度和宽度。并认识了垂直单位与水平单位的比例是6:
5。有了这个简单的比例,你可以试着去将轴或销插入垂直梁的孔中来固定结构;你知道了每5
块积木砖的高度,垂直梁的孔刚好与之相配合;同样,由于3块板的高度刚好等于一块积木砖,
最紧凑的固定结构就是使用2片板和1块砖加起来的高度,因为它刚好是5的倍数,如果对此你
能灵活应用,每一件事都会变的很容易:1块砖,2块板,1块砖,2块板……
为了配合一根斜梁,使用了勾股定理。基于3-4-5边长的连接可以组成一类容易记住的边长
来做成一个三角形。但也有其他方法,有的也是基于这个原理,还是去看一下附录B提供的表
吧。
rjj第二童齿轮
有效利地用传动原理,可以起到事半功倍的效果。但是,很多人并不是专业人士,不一
定非常了解机械结构原理,即使生活中的机械结构无处不在,平时我们也很少去注意它们
是怎么工作的,以及为什么要使用这些机械。但是,在机器人的设计中,机械结构是完善
系统的一个重要因素。这里通过浅显的例子,和你一起动手设计,可以让你在一小时内,认
识各种各样的传动机构,了解其工作原理及其优缺点,什么时候用哪种传动系统最有效等,
帮你设计出出色的机器人系统。
本章包含的内容:
齿数的计算
T加速及减速传动
T齿轮传动链
限制扭矩-离合齿轮
T齿轮的配合
使用滑轮、皮带、链条
T差速齿一一产生不同的速度
2.1简介
齿轮是机器中很重要的部件,它几乎是机器的象征。只要一看到齿轮,我们就会联想到
机器。在这一章,我们将进入神奇的齿轮世界,去探索齿轮的一种非常有用的特性:将一种
力魔法般的转换成另外一种力。并且介绍一些新的概念――速度、力、扭矩、摩擦力;还有
一些简单的机械理论基础,这些概念没有你想象的那么复杂。本章将指导你认识齿轮和简单
杠杆之间的相似点。
准备一些齿轮,梁和轴来模仿搭建这一章中简单的装置,那些说
明更有效。
2.2齿数的计算
齿轮单独使用几乎没有实际的用处(特殊情况除外)。一般用中至少需要两个齿轮,
如图2.1所示,为两个普通的乐高齿轮:左边是8齿齿轮,右边是24齿齿轮。齿轮的最重
要属性就是它的齿数。齿轮是根据齿数分类的:它的英文缩写就代表它的名字,例如24齿
的齿轮可以表示为24t。
自己动手搭建比看
图2.1一个8齿和24齿的齿轮
回到例子中,我们使用了8齿和24齿的两个齿轮,分别固定在一根轴上。两轴与一带
孔梁相配合,两孔间距两个乐高单位(一个乐高单位就相当于相邻两孔间距),现在一手拿
住梁,另一手轻轻地转动其中一根轴,注意到的第一个特性:当转动其中一根轴时,另一轴
也同时转动,因此,齿轮的基本属性就是可以将运动从一根轴传到其它轴上。第二个特点是
你不需要用很大的力去转动它们,因为齿轮间配合相当紧凑,摩擦力很小,这也是乐高工艺
系统大特性之一:部件之间配合精度高。第三个特点是两根轴反向转动:一个顺时针,一
个逆时针。第四个特点:也是最重要的特性,就是两根轴的旋转速度不同。当转动8齿齿轮
时,24齿齿轮转动得很慢;而24齿的齿轮转动时,8齿齿轮转动得很快。
2.3加速和减速传动
在上面的例子中,我们先转动大齿轮(24齿),它的每一个齿都与8齿的两个齿啮合
的很好。当转动24齿,每一次在齿轮的接触面一个新齿取代前一个齿时,8齿也刚好转过一
个齿,因此,大齿轮转过8个齿(24齿的齿轮)就可以让小齿轮转过一圈(360度)。当
大齿轮再转过8个齿时,小齿轮又转了一圈。在你转动24齿齿轮的最后8个齿时,8齿齿
轮转过第三圈。这也是两轴产生不同速度的原因:24齿齿轮转动一圈,8齿齿轮转动了三圈!
我们用两个齿轮齿数之比来表示两者的关系:24比&经过简化,得到3:1。从数字来看,24
齿齿轮1转就相当与8齿齿轮的3转。
由此,我们得到一种加速的方法(从技术角度来将应称为角速度,而不是速度)。这时
候你可能会想到在竞速小车上使用巨大的传动比。遗憾的是,在力学中有得必有失,获得了
速度,同时就减少了扭矩,简单的说,就是在力量上的损失会转化为速度一一速度越快,扭
矩就越小。比率也相同:如果获得了三倍的角速度,你的扭矩会减小到原来的1/3。
齿轮有一个有趣的特性:扭矩和速度的转换是对称的,你可以将扭矩转换成速度,反之
亦然。当系统增加速度而减小扭矩时,我们称为加速,反之我们称为减速。
本文发布于:2022-11-12 00:20:04,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/1100.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |