溶解度,物质的物理性质之一

更新时间:2022-11-16 13:06:15 阅读: 评论:0

基本内容

溶解度1.固体及少量液体物质的溶解度是指在一定的温度下,某固体物质在100克溶剂里(通常为水)达到饱和状态时所能溶解的质量(在一定温度下,100克溶剂里溶解某物质的最大量),用字母S表示,其单位是“g/100g水(g)”。在未注明的情况下,通常溶解度指的是物质在水里的溶解度。例如,在20°C的时候,100克水里溶解0.165克氮氧化钙,溶液就饱和了,氢氧化钙在20°C的溶解度就是0.165克,也可以写成0.165克/100克水。又如,在20°C的时候,100克水里要溶解36克食盐或者溶解203.9克蔗糖才能饱和,食盐和蔗糖在20°C的溶解度就分别是36克和203.9克,也可以写成36克/100克水和203.9克/100克水。

2.气体的溶解度通常指的是该气体(其压强为1标准大气压)在一定温度时溶解在1体积溶剂里的体积数。也常用“g/100g溶剂”作单位(自然也可用体积)。

3.特别注意:溶解度的单位是克(或者是克/100克溶剂)而不是没有单位。

在一定的温度和压力下,物质在一定量的溶剂中溶解的最高量。一般以 100克溶剂中能溶解物质的克数来表示。一种物质在某种溶剂中的溶解度主要决定于溶剂和溶质的性质,即溶质在溶剂的溶解平衡常数。例如,水是最普通最常用的溶剂,甲醇和乙醇可以任何比例与水互溶。大多数碱金属盐类都可以溶于水;苯几乎不溶于水。

溶解度明显受温度的影响,大多数固体物质的溶解度随温度的升高而增大;气体物质的溶解度则与此相反,随温度的升高而降低。溶解度与温度的依赖关系可以用溶解度曲线来表示。氯化钠NaCl的溶解度随温度的升高而缓慢增大,硝酸钾的溶解度随温度的升高而迅速增大,而硫酸钠的溶解度却随温度的升高而减小。

固体和液体的溶解度基本不受压力的影响,而气体在液体中的溶解度与气体的分压成正比。物质的溶解度对于化学和化学工业都很重要,在固体物质的重结晶和分级结晶、化学物质的制备和分离、混合气体的分离等工艺中都要利用物质溶解度的差别。

在一定温度下,某物质在100g溶剂里达到饱和状态(或称溶解平衡)时所溶解的克数,叫做这种物质在这种溶剂里的溶解度。在一定温度和压强下,物质在一定量的溶剂中溶解的最大量,叫做这种物质在这种溶剂里的溶解度。溶解性是表示一种物质在另一种物质中的溶解能力,通常用易溶、可溶、微溶、难溶或不溶等粗略的概念来表示。溶解度是衡量物质在溶剂里溶解性大小的尺度,是溶解性的定量表示。

溶解度常用符号S表示。溶解度的单位用g/100g 表示。例如20℃,在100g水里最多溶解36gNaCl,则氯化钠在20℃的溶解度是36g/100g ,可表示为。实际上溶解度是没有单位的相对比值,按法定计量单位,可用质量分数表示。例如在20℃,。溶解度也可以用饱和溶液的浓度表示。例如,氯化钾在20℃的溶解度是(此浓度为质量摩尔浓度),即表示20℃在1000g水中最多可溶解4.627mol的氯化钾。难溶物质的溶解度也可以用物质的量浓度(摩尔浓度)表示。例如在25℃,氢氧化铁的物质的量浓度是0.45μmol/L,即表示1L氢氧化铁饱和溶液里含0.45μmol氢氧化铁。多数固体物质的溶解度随温度的上升而增大,如氯化铵、硝酸钾。少数物质的溶解度受温度变化的影响很小,如氯化钠。含有结晶水的硫酸钠()的溶解度开始随温度的升高而增大,当达到一定温度(32.4℃)时,随温度的升高而减小(这时脱水成)。含有结晶水的氢氧化钙和醋酸钙等物质的溶解度随温度的升高而减小。气体的溶解度随温度的升高而减小,随压强的增大而增大。影响溶解度的因素为温度。

不同状态

固体溶解度

固体物质的能容溶解度是指在一定的温度下,某物质在100克溶剂里达到饱和状态时所溶解的质量,用字母s表示,其单位是“g/100g水”。在未注明的情况下,通常溶解度指的是物质在水里的溶解度。例如:在20℃时,100g水里最多能溶36g氯化钠(这时溶液达到饱和状态),在20℃时,氯化钠在水里的溶解度是36g。

气体溶解度

在一定温度和压强下,气体在一定量溶剂中溶解的最高量称为气体的溶解度。常用定温下1体积溶剂中所溶解的最多体积数来表示。如20℃时100mL水中能溶解1.82mL氢气,则表示为1.82mL/100mL水等。气体的溶解度除与气体本性、溶剂性质有关外,还与温度、压强有关,其溶解度一般随着温度升高而减少,由于气体溶解时体积变化很大,故其溶解度随压强增大而显著增大。关于气体溶解于液体的溶解度,在1803年英国化学家W.亨利,根据对稀溶液的研究总结出一条定律,称为亨利定律。

【提示】如果不指明溶剂,通常所说的溶解度是指物质在水里的溶解度。另外,溶解度不同于溶解速度。搅拌、振荡、粉碎颗粒等增大的是溶解速度,但不能增大溶解度。溶解度也不同于溶解的质量,溶剂的质量增加,能溶解的溶质质量也增加,但溶解度不会改变。

实例

大部分固体随温度升高溶解度增大,如硝酸钾。

少部分固体溶解度受温度影响不大,如食盐(氯化钠)。

极少数物质溶解度随温度升高反而减小,如氢氧化钙。因为氢氧化钙有两种水合物〔和〕。这两种水合物的溶解度较大,无水氢氧化钙的溶解度很小。随着温度的升高,这些结晶水合物逐渐变为无水氢氧化钙,所以,氢氧化钙的溶解度就随着温度的升高而减小。除了氢氧化钙还有别的物质溶解度也随温度的升高而减小,比如说硫酸锂。

影响因素

物质溶解与否,溶解能力的大小,一方面决定于物质(指的是溶剂和溶质)的本溶解度性;另一方面也与外界条件如温度、压强、溶剂种类等有关。在相同条件下,有些物质易于溶解,而有些物质则难于溶解,即不同物质在同一溶剂里溶解能力不同。通常把某一物质溶解在另一物质里的能力称为溶解性。例如,糖易溶于水,而油脂不溶于水,就是它们对水的溶解性不同。溶解度是溶解性的定量表示。

在未注明的情况下,通常溶解度指的是物质在水里的溶解度。如20℃时,食盐的溶解度是36克,氯化钾的溶解度是34克。这些数据可以说明20℃时,食盐和氯化钾在100克水里最大的溶解量分别为36克和34克;也说明在此温度下,食盐在水中比氯化钾的溶解能力强。

通常把在室温(20°C)下,溶解度在10g/100g水以上的物质叫易溶物质,溶解度在1~10g/100g水叫可溶物质,溶解度在0.01g~1g/100g水的物质叫微溶物质,溶解度小于0.01g/100g水的物质叫难溶物质。可见溶解是绝对的,不溶解是相对的.

气体的溶解度还和压强有关。压强越大,溶解度越大,反之则越小。

其他条件一定时,温度越高,气体溶解度越低。

溶解平衡

每份(通常是每份质量)溶剂(有时可能是溶液)所能溶解的溶质的量的最溶解度大值就是溶质在这种溶剂的溶解度。如果不指明溶剂,通常意味着溶剂为水,比如“氯化钠的溶解度”和“氯化钠在水中的溶解度”可以认为是具有同样的意思。溶解度并不是一个恒定的值。一种溶质在溶剂中的溶解度由它们的分子间作用力、温度、溶解过程中所伴随的熵的变化以及其他物质的存在及多少,有时还与气压或气体溶质的分压有关。因此,一种物质的溶解度最好能够表述成:“在某温度,某气压下,某物质在某物质中的溶解度为xxxx。”,如无指明,则温度及气压通常指的是标准状况(STP)。

实际上,溶解度往往取决于溶质在水中的溶解平衡常数。这是平衡常数的一种,反映溶质的溶解-沉淀平衡关系,当然它也可以用于沉淀过程(那时它叫溶度积)。因此,溶解度与温度关系很大,也就不难解释了。达到化学平衡的溶液便不能容纳更多的溶质(当然,其他溶质仍能溶解),我们称之为饱和溶液。在特殊条件下,溶液中溶解的溶质会比正常情况多,这时它便成为过饱和溶液。在一定温度和压力下,物质在一定量溶剂中溶解的最大量。

固体或液体溶质的溶解度,常用100克溶剂中所溶解的溶质克数表示。例如在20℃和常压下,硝酸钾在水中的溶解度是31.5克/100克水,或简称31.5克。气体溶质的溶解度,常用每毫升溶剂中所溶解的气体毫升数表示。例如在20℃和常压下,氨的溶解度是700毫升/1毫升水。物质的溶解度除与溶质和溶剂的性质有关外,还与温度、压力等条件有关。随着温度的升高,大多数固体和液体的溶解度增大,气体的则减小。随着压力的增大,气体的溶解度增大。

变化原理

气体的溶解度大小,首先决定于气体的性质,同时也随着气体的压强和溶剂的温度的不同而变化。例如,在20℃时,气体的压强为,一升水可以溶解气体的体积是:氨气为702L,氢气为0.01819L,氧气为0.03102L。氨气易溶于水,是因为氨气是极性分子,水也是极性分子,而且氨气分子跟水分子还能形成氢键,发生显著的水合作用,所以,它的溶解度很大;而氢气、氧气都是非极性分子,所以在水里的溶解度很小。

当压强一定时,气体的溶解度随着温度的升高而减少。这一点对气体来说没有例外,因为当温度升高时,气体分子运动速率加快,容易自水面逸出。

当温度一定时,气体的溶解度随着气体的压强的增大而增大。这是因为当压强增大时,液面上的气体的浓度增大,因此,进入液面的气体分子比从液面逸出的分子多,从而使气体的溶解度变大。而且,气体的溶解度和该气体的压强(分压)在一定范围内成正比(在气体不跟水发生化学变化的情况下)。例如,在20℃时,氢气的压强是 ,氢气在一升水里的溶解度是0.01819L;同样在20℃,在 时,氢气在一升水里的溶解度是0.01819×2=0.03638L。

气体的溶解度有两种表示方法,一种是在一定温度下,气体的压强(或称该气体的分压,不包括水蒸气的压强)是 时,溶解于一体积水里,达到饱和的气体的体积(并需换算成在0℃时的体积数),即这种气体在水里的溶解度。另一种气体的溶解度的表示方法是,在一定温度下,该气体在100g水里,气体的总压强为 (气体的分压加上当时水蒸气的压强)所溶解的克数。

夏天打开汽水瓶盖时,压强减小,气体的溶解度减小,会有大量气体涌出。

喝汽水后会打嗝,因为汽水到胃中后,温度升高,气体的溶解度减小。

溶解度曲线

溶解度曲线的意义与应用可从点、线、面和交点四方面来分析。

溶解度1.点

溶解度曲线上的每个点表示的是某温度下某种物质的溶解度。即曲线上的任意一点都对应有相应的温度和溶解度。温度在横坐标上可以找到,溶解度在纵坐标上可以找到。溶解度曲线上的点有三个方面的作用: (1)根据已知温度查出有关物质的溶解度;(2)根据物质的溶解度查出对应的温度;(3)比较相同温度下不同物质溶解度的大小或者饱和溶液中溶质的质量分数的大小。

2.线

溶解度曲线表示某物质在不同温度下的溶解度或溶解度随温度的变化情况。曲线的坡度越大,说明溶解度受温度影响越大;反之,说明受温度影响较小。溶解度曲线也有三个方面的应用:(1)根据溶解度曲线,可以看出物质的溶解度随着温度的变化而变化的情况。 (2)根据溶解度曲线,比较在一定温度范围内的物质的溶解度大小。 (3)根据溶解度曲线,选择分离某些可溶性混合物的方法。

3.面

对于曲线下部面积上的任何点,依其数据配制的溶液为对应温度时的不饱溶解度和溶液;曲线上部面积上的点,依其数据配制的溶液为对应温度时的饱和溶液,且溶质有剩余。如果要使不饱和溶液(曲线下部的一点)变成对应温度下的饱和溶液,方法有两种:第一种方法是向该溶液中添加溶质使之到达曲线上;第二种方法是蒸发一定量的溶剂。

4.交点

两条溶解度曲线的交点表示该点所示的温度下两物质的溶解度相同,此时两种物质饱和溶液的溶质质量分数也相同。

常见气体溶解度

,一氧化碳

(极易溶解于水) (易溶解于水) (能溶解于水) (难) (极难)

特征

(1)大部分固体物质的溶解度曲线左低右高,溶解度随温度的升高而增加;

(2)少数固体物质的溶解度曲线较平缓,溶解度受温度的影响小,如食盐;

(3)极少数固体物质的溶解度曲线是左高右低,溶解度随温度的升高而降低,如熟石灰;

用溶解性表示物质的溶解能力是定性的,粗略的。

应用

(l)由已知温度查某物质对应的溶解度;

(2)由物质的溶解度查该物质所处的温度;

(3)比较同一温度下不同物质的溶解度;比较同一物质在不同温度下的溶解度。

(4)比较和确定物质的溶解度受温度影响的程度,并据此设计混合物分离或提纯的方法,例如提纯可用蒸发溶剂法,分离NaCl和可用降温结晶法。

(5) 能够判断在一定温度下某物质饱和溶液中溶质、溶剂、溶液的质量比。

(6)判断在一定温度下把一定量的溶质溶解在一定量的溶剂里所形成的溶液是否为饱和溶液。

(7)根据物质在20摄氏度的溶解度来确定物质的溶解度大小。

(8)确定溶液的状态(饱和与不饱和)。

质量分数类型

大致包括以下四种类型:

(1)已知溶质和溶剂的量,求溶质的质量分数;

(2)要配制一定量的溶质的质量分数一定的溶液,计算所需溶质和溶剂的量;

(3)溶液稀释和配制问题的计算;

(4)把溶质的质量分数运用于化学方程式的计算。

溶质的质量分数的计算方式:

例 10克氯化钠溶解于90克水中,则在所得氯化钠溶液中溶质的质量分数

溶液的稀释

根据稀释前后溶质的总量不变进行运算,无论是用水,或是用稀溶液来稀释浓溶液,都可计算。

(1)用水稀释浓溶液

设稀释前的浓溶液的质量为m,其溶质的质量分数为a%,稀释时加入水的质量为n,稀释后溶质的质量分数为b%。

则可得

(2)用稀溶液稀释浓溶液

设浓溶液的质量为A,其溶质的质量分数为a%,稀溶液的质量为B,其溶质的质量分数为b%,两液混合后的溶质的质量分数为c%。

则可得 (1)

或 (2)

计算

固体溶解度之一

在一定温度下,某固态物质在100g溶剂里达到饱和时所溶解的克数,叫做这种物质在这种溶剂里的溶解度。符号:S

固体溶解度之二

在一定温度下,一定量的饱和溶液中含有固体溶质的量称为该固体物质在溶解度指定温度下的溶解度。通常以一定温度下,物质在100g溶剂中达到饱和时所溶解的克数来表示某物质在该溶剂中的溶解度,如20℃时,100g水中最多能溶解35.8g氯化钠,即该温度下氯化钠的溶解度为35.8g/100g水。

固体物质的溶解度与溶质、溶剂的本性有关,通常溶质的结构与溶剂的结构相似时较易溶解,即所谓相似相溶原理,它可解释部分事实。大多数固体物质的溶解度随温度升高而增大,温度对不同的物质影响不同,可根据物质溶解度与温度的关系作出溶解度曲线,利用溶解度曲线可找出在任何温度时,某物质的溶解度,也可利用溶解度曲线提纯、分离某些物质。固体物质的溶解度受压力影响较小。

物质的溶解性

溶解性 溶解度(20℃)

易溶 大于等于10g

可溶 大于等于1g小于10g

微溶 大于等于0.01g小于1g

难溶(不溶)小于0.01g

锕、氨、铵

物质化学式0°C10°C20°C30°C40°C50°C60°C70°C80°C90°C100°C
0.0022
88.5705644.53426.520151187
1625.337.1
20
11.916.121.728.436.659.2109170354
60.668.176.483.291.2108125135145
100
28.7
氯化铵29.433.237.241.445.850.455.360.265.671.277.3
0.2890.3740.4990.6370.8151.442.162.613.36
2529.23439.345.35976.1
18.225.535.646.558.586115156
砷酸二氢铵33.748.763.883107122
22.739.537.446.456.782.5118173
18.6
102143204311533
磷酸一氢铵42.962.968.975.181.897.2
100
1.882.7
碘酸铵2.6
155163172182191209229250
118150192242297421580740871
(NH4)5IO62.7
(NH4)2C2O42.23.214.456.098.181422.427.934.7
NH4ClO41216.421.737.734.649.968.9
NH47.9
(NH4)3PO426.1
(NH4)2SeO496105115126143192
(NH4)2SO470.67375.478818895103
47.95460.868.878.4104144150153
(NH4)245556370.576.586.9
120144170208234346
2.15
钒酸铵0.480.841.322.42

钯、钡、铋、铂、钚

物质化学式0°C10°C20°C30°C40°C50°C60°C70°C80°C90°C100°C
氢氧化钯(II)4.106×10
氢氧化钯(IV)Pd(OH)45.247×10
Ba(C2H3O2)258.862727578.5757474.8
Ba3(AsO4)22.586×10
叠氮化钡Ba(N3)212.516.117.4
Ba(BrO3)20.290.440.650.951.312.273.520.951.31
溴化钡BaBr298101104109114123135149
1.409×10
Ba(ClO3)220.326.933.941.649.766.784.8105
31.233.535.838.140.846.252.555.859.4
氯酸钡Ba(ClO2)243.944.645.447.953.866.680.8
铬酸钡BaCrO42.775×10
Ba80
亚铁氰化钡Ba2Fe(CN)69.732×10
0.1590.160.162
氟硅酸钡BaSiF62.8×10
甲酸钡Ba(H26.22831.93438.644.247.651.3
BaHPO41.3×10
亚磷酸氢钡Ba0.687
Ba(OH)2·8H2O1.672.483.895.598.2220.9101
Ba(IO3)23.5×104.6×105.7×10
BaI2182201223250264291301
BaMoO46×10
Ba(NO3)24.956.679.0211.514.120.427.234.4
Ba(50.36072.8102151222261325
BaC2O4·2H2O3×10
BaO3.8
Ba(239336416495575653
Ba(MnO4)21.5×10
焦磷酸钡Ba2P2O79×10
BaSeO45×10
2.448×10
BaS2.884.897.8610.414.927.749.967.360.3
砷酸铋BiAsO47.298×10
Bi(OH)32.868×10
碘化铋BiI37.761×10
BiPO41.096×10
1.561×10
氢氧化铂(II)3.109×10
溴化铂(IV)PtBr41.352×10
氟化钚(III)PuF33.144×10
氟化钚(IV)PuF43.622×10
碘酸钚(IV)Pu(IO3)47.998×10

氮、镝

物质化学式0°C10°C20°C30°C40°C50°C60°C70°C80°C90°C100°C
NO5.6×10
一氧化二氮N2O0.112
铬酸镝(III)0.663

物质化学式0°C10°C20°C30°C40°C50°C60°C70°C80°C90°C100°C
Er(OH)31.363×10

物质化学式0°C10°C20°C30°C40°C50°C60°C70°C80°C90°C100°C
0.8

钆、钙、锆、镉、铬、汞、钴、硅

物质化学式0°C10°C20°C30°C40°C50°C60°C70°C80°C90°C100°C
·4H2O11.6
碳酸氢钆(III)Gd(H5.61
溴酸钆(III)Gd(BrO3)3·9H2O50.270.195.6126166
氢氧化钆(III)Gd(OH)31.882×10
Gd2(SO4)33.983.32.62.32
CaCl259.564.774.5100128137147154159
Ca(C2H3O2)2·2H2O37.43634.733.833.232.733.531.129.7
砷酸钙Ca3(AsO4)23.629×10
叠氮化钙Ca(N3)245
Ca(C7H5O2)2·3H2O2.322.452.723.023.424.716.878.558.7
碳酸氢钙Ca(HCO3)216.116.617.117.517.918.4
Ca(BrO3)2230
CaBr2125132143213278295312
霰石7.753×10
CaCO3-方解石6.170×10
Ca(ClO3)2209
铬酸钙CaCrO44.52.251.831.490.83
磷酸二氢钙Ca(H2PO4)21.8
氟化钙CaF28.575×10
0.518
甲酸钙Ca(HCO2)216.116.617.117.517.918.4
磷酸氢钙CaHPO44.303×10
氢氧化钙0.1890.1820.1730.160.1410.1218.6×107.6×10
碘酸钙Ca(IO3)29×100.240.380.520.650.660.67
碘化钙CaI264.66667.670.8747881
CaMoO44.099×10
Ca(NO3)2·4H2O102115129152191358363
Ca(NO2)2·4H2O63.984.5104134151166178
草酸钙CaC2O46.7×10
188
Ca(MnO4)2338
2×10
硒酸钙CaSeO4·2H2O9.739.779.228.797.14
CaSO4·2H2O0.2230.2440.2550.2640.2650.2440.2340.205
CaWO42.387×10
1.32
52.5
砷酸镉Cd3(AsO4)27.091×10
苯甲酸镉Cd(C7H5O2)22.81
Cd(BrO3)2125
Cd56.375.498.8129152153156160
CdCO33.932×10
氯酸镉Cd(ClO3)2299308322348376455
CdCl2100135135135135136140147
Cd(CN)22.2×10
亚铁氰化镉Cd2Fe(CN)68.736×10
CdF24
甲酸镉Cd(HCO2)28.311.114.418.625.359.580.585.294.6
Cd(OH)22.697×10
Cd(IO3)29.7×10
CdI278.784.787.992.1100111125
Cd(NO3)2122136150194310713
草酸镉CdC2O4.3H2O6.046×10
Cd(ClO4)2180188195203221243272
Cd3(PO4)26.235×10
硒酸镉CdSeO472.568.46458.95544.232.527.222
CdSO475.47676.678.581.866.763.160.8
CdS1.292×10
CdWO44.642×10
Cr(NO3)3108124130152
高氯酸铬Cr(ClO4)3104123130
Cr2(SO4)3·18H2O220
叠氮化亚汞Hg2(N3)22.727×10
Hg2Br21.352×10
Hg2CO34.351×10
Hg2Cl23.246×10
铬酸亚汞Hg2CrO42.313×10
氰化亚汞Hg2(CN)22.266×10
高氯酸亚汞Hg2(ClO4)2)282325407455499541580
4.277×10
25
苯甲酸汞Hg(C7H5O2)2·H2O1.1
溴酸汞Hg(BrO3)2·2H2O0.08
0.30.40.560.660.911.682.774.9
氯酸汞Hg(ClO3)225
氯化汞3.634.826.578.3410.216.33061.3
Hg(CN)29.3
碘酸汞Hg(IO3)22.372×10
HgI26×10
HgC2O41.1×10
2.943×10
6.3×10
溴酸钴Co(BrO3)2·6H2O45.5
91.9112128163227241257
Co(ClO3)2135162180195214316
氯化钴43.547.752.959.769.593.897.6101106
氟化钴CoF21.36
氟硅酸钴CoSiF6·6H2O118
Co(IO3)2·2H2O1.020.90.880.820.730.7
碘化钴CoI2203
Co(NO3)28489.697.4111125174204300
亚硝酸钴Co(NO2)27.6×100.240.40.610.85
Co(ClO4)2104
CoSO425.530.536.14248.85553.845.338.9
0

铪、氦、钬

物质化学式0°C10°C20°C30°C40°C50°C60°C70°C80°C90°C100°C
Hf(OH)34.50305×10
氢氧化铪(IV)Hf(OH)44.503×10
He0.6
氢氧化钬(III)Ho(OH)32.519×10
硫酸钬(III)Ho2(SO4)3·8H2O8.186.14.52

镓、钾、金

物质化学式0°C10°C20°C30°C40°C50°C60°C70°C80°C90°C100°C
Ga(OH)38.616×10
草酸镓Ga2(C2O4)3·42O0.4
Ga2(SeO4)3·16H2O18.1
乙酸钾KC2H3O2216233256283324350381398
K3AsO419
41.446.250.855.861106
KC7H5O265.870.776.782.1
3.094.726.919.6413.122.734.149.9
53.659.565.370.775.485.594.999.2104
溴铂酸钾K2PtBr61.89
碳酸钾105109111114117127140148156
3.35.27.310.113.923.837.54656.3
氯化钾KCl2831.234.237.240.145.848.851.353.956.3
铬酸钾56.36063.766.767.870.174.5
KCN50
4.7712.318.126.345.673
砷酸二氢钾KH2AsO419
14.818.322.62835.550.270.483.5
K3Fe(CN)630.238465359.37091
14.321.128.235.141.454.866.971.574.2
KF44.753.594.9108138142150
KHCO2313337361398471580658
KHCO322.527.433.739.947.565.6
磷酸一氢钾150
36.248.654.36176.496.1122
95.7103112126134154178
碘酸钾KIO34.66.278.0810.312.618.324.832.3
128136144153162168176192198206
硝酸钾13.921.931.645.361.385.5106138167203245
279292306320329348376390410
草酸钾K2C2O425.531.936.439.943.853.263.669.275.3
KClO40.761.061.682.563.737.313.417.722.3
高碘酸钾KIO40.170.280.420.6512.14.45.9
KMnO42.834.316.349.0312.622.1
4.7
磷酸钾81.592.3108133
K2SeO4107109111113115119121122
7.49.311.11314.818.221.422.924.1
KBC24H201.8×10
177198224255289372492571675
K2S2O396155175205238293312
K2WO451.5
三氯化金68
三碘化金AuI31.295×10
草酸金(V)Au2(C2O4)50.258

物质化学式0°C10°C20°C30°C40°C50°C60°C70°C80°C90°C100°C
Sc2(C2O4)3·6H2O6×10
Sc2(SO4)3·5H2O54.6

镧、锂、硫、镥、铝

乙酸镧La(C2H3O2)3·H2O16.9
La(BrO3)398120149200
碘酸镧La(IO3)34.575×10
钼酸镧La2(MoO4)32.473×10
La(NO3)3100136168247
硒酸镧La2(SeO4)350.54545454518.55.42.2
硫酸镧La2(SO4)332.722.331.91.671.260.910.790.68
钨酸镧La2(WO4)3·3H2O6.06
LiC2H3O231.235.140.850.668.6
叠氮化锂LiN361.364.267.271.275.486.6100
38.941.644.753.8
溴酸锂154166179198221269308329355
LiBr143147160183211223245266
Li2CO31.541.431.331.261.171.081.010.850.72
氯酸锂LiClO3241283372488604777
LiCl69.274.583.586.289.898.4112121128
铬酸锂Li2CrO4.2H2O142
重铬酸锂Li2Cr2O7.2H2O151
126
0.16
氟硅酸锂Li2SiF6.2H2O73
LiHCO232.335.739.344.149.564.792.7116138
亚磷酸氢锂Li2HPO34.439.977.617.116.03
LiOH12.712.712.812.913.013.313.815.317.5
LiI151157165171179202435440481
Li2MoO482.679.579.57873.9
53.460.870.1138152175
亚硝酸锂LiNO270.982.596.8114133177233272324
8
42.74956.163.672.392.3128151
LiMnO471.4
磷酸锂Li3PO43.821×10
硒化锂Li2Se57.7
亚硒酸锂Li2SeO32523.321.519.617.914.711.911.19.9
硫酸锂36.135.534.834.233.732.631.430.9
Li2C4H4O64231.827.126.627.229.5
硫氰酸锂LiSCN114131153
LiVO32.54.826.284.382.67
SO29.4
Lu(OH)31.164×10
Lu2(SO4)3·8H2O57.9
AlCl343.944.945.846.647.348.148.649
AlF30.560.560.670.780.911.11.321.72
Al(NO3)36066.773.981.888.7106132153160
高氯酸铝Al(ClO4)3122128133
31.233.536.440.445.859.27380.889
0.0001

本文发布于:2022-11-16 13:06:15,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/83/493414.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:溶解度
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图