列向量,线性代数中的数学术语

更新时间:2022-11-05 00:14:41 阅读: 评论:0

向量

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。

向量的记法:印刷体记作粗体的字母(如),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如平面中是一向量。

在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的向量是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。

简介

列向量在线性代数中,列向量(Column vector)是一的矩阵,即矩阵由一个包含m个元素的列组成。

为简化书写、方便排版起见,有时会以加上转置符号T的行向量表示列向量。

为进一步化简,习惯上会把行向量和列向量都写成行的形式。不过行向量的元素是用空格或逗号隔开,列向量则用分号隔开。

例如为两行两列的矩阵,可写为。

单位列向量

单位列向量,即向量的长度为1,其向量所有元素的平方和为1。例如,就是一个单位列向量。

反之,若,则X称为单位向量。

表示n维向量X长度(或范数)。

行向量

在线性代数中,行向量是一个 的矩阵,即矩阵由一个含有n个元素的行所组成即行向量。

行向量的转置是一个列向量,反之亦然。

所有的行向量的集合形成一个向量空间,它是所有列向量集合的对偶空间。

本文发布于:2022-11-05 00:14:41,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/83/431014.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:列向量
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图