二次函数性质,二次函数的各种表达式特性

更新时间:2022-10-23 17:28:39 阅读:20 评论:0

定义

重要知识:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,au003c0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)

二次函数表达式的右边通常为二次。

x是自变量,y是x的二次函数。

一元二次方程求根公式

当b²-4ac>0时

二次函数性质当b²-4ac=0时

x1=x2=-b/2a

转化

3种形式的转化∶

①一般式和顶点式

对于二次函数y=ax2+bx+c,其顶点坐标为(-b/2a,(4ac-b2)/4a),即h=-b/2a=(x1+x2)/2。

②一般式和交点式

x1,x2=[-b±√(b2-4ac)]/2a(即一元二次方程求根公式)。

有关性质

抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b)/4a)

当-b/2a=0,〔即b=0〕时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线开口向上;当au003c0时,抛物线开口向下。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即abu003c0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b²-4ac>0时,抛物线与x轴有2个交点。

Δ=b²-4ac=0时,抛物线与x轴有1个交点。

Δ=b²-4acu003c0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac乘上虚数i,整个式子除以2a)

当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=〔4ac-b〕/4a;在{x|xu003c-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax+c(a≠0)

7.定义域:R

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b)/4a,正无穷);②[k,正无穷)

奇偶性:非奇非偶(当且仅当b=0时,函数解析式为f(x)=ax+c,此时为偶函数)

周期性:无

解析式:

①y=ax+bx+c[一般式]

⑴a≠0,a、b、c为常数。

⑵a>0,则抛物线开口朝上;au003c0,则抛物线开口朝下;

⑶极值点:(-b/2a,(4ac-b)/4a);

⑷Δ=b²-4ac,

Δ>0,图象与x轴交于两点:

([-b+√Δ]/2a,0)和([-b-√Δ]/2a,0);

Δ=0,图象与x轴交于一点:

(-b/2a,0);

Δu003c0,图象与x轴无交点;

②y=a(x-h)+k[配方式]

此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b)/4a;

二次函数的性质

特别地,二次函数(以下称函数)y=ax2+bx+c(a≠0),

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax2+bx+c=0(a≠0)

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax2,y=ax2+k,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式y=ax2+ky=ax2y=a(x-h)2y=a(x-h)2+ky=ax2+bx+c
顶点坐标(0,k)(0,0)(h,0)(h,k)(-b/2a,4ac-b2/4a)
对称轴x=0(y轴)x=0(y轴)x=hx=hx=-b/2a

当h>0时,y=a(x-h)2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当hu003c0时,则向左平行移动|h|个单位得到。

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象;

当h>0,ku003c0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当hu003c0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;

当hu003c0,ku003c0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

因此,研究抛物线y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。

2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当au003c0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b2]/4a)。

3.抛物线y=ax2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若au003c0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax+bx+c(a≠0)的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b²-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x2-x1|另外,抛物线上任何一对对称点的距离可以由2x|A+b/2a|(A为其中一点的横坐标)

当△=0.图象与x轴只有一个交点;

当△u003c0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当au003c0时,图象落在x轴的下方,x为任何实数时,都有yu003c0。

5.抛物线y=ax+bx+c的最值(也就是极值):如果a>0(au003c0),则当x=-b/2a时,y最小(大)值=(4ac-b)/4a.

顶点的横坐标,是取得极值时的自变量值,顶点的纵坐标,是极值的取值。

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax+bx+c(a≠0)。

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a≠0)。

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0)。

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中高考的热点考题,往往以大题形式出现。

本文发布于:2022-10-23 17:28:39,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/83/356686.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:分期点卷
相关文章
留言与评论(共有 0 条评论)
昵称:
匿名发表 登录账号
         
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图