关于二次函数的知识点总结

更新时间:2022-11-09 20:30:51 阅读: 评论:0

关于二次函数的知识点总结

关于二次函数的知识点总结

  导语:二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。下面是由小编整理的关于二次函数的知识点总结。欢迎阅读!

  二次函数的知识点总结

  1、二次函数及其图像

  二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2bxc(a不为0)。其图像是一条主轴平行于y轴的抛物线。

  一般的,自变量x和因变量y之间存在如下关系:

  一般式

  y=ax∧2;bxc(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);

  顶点式

  y=a(xm)∧2k(a≠0,a、m、k为常数)或y=a(x-h)∧2k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;

  交点式

  y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];

  重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的'绝对值越小开口就越大。

  牛顿插值公式(已知三点求函数解析式)

  y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引导出交点式的系数a=y1/(x1*x2)(y1为截距)

  求根公式

  二次函数表达式的右边通常为二次三项式。

  x是自变量,y是x的二次函数

  x1,x2=[-b±(√(b^2-4ac))]/2a

  (即一元二次方程求根公式)

  求根的方法还有因式分解法和配方法

  在平面直角坐标系中作出二次函数y=2x的平方的图像,

  可以看出,二次函数的图像是一条永无止境的抛物线。

  不同的二次函数图像

  如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

  注意:草图要有1本身图像,旁边注明函数。

  2、画出对称轴,并注明X=什么

  3、与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质

  轴对称

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  顶点

  2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2;)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2;-4ac=0时,P在x轴上。

  开口

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

胭脂扣剧情  |a|越大,则抛物线的开口越小。

  决定对称轴位置的因素

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号

  当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b 2a="">0,所以b/2a要小于0,所以a、b要异号

  可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左让梦飞起来;当a与b异号时(即ab<0),对称轴在y轴右。

  事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

  决定抛物线与y轴交点的因素

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  抛物线与x轴交点个数

  6.抛物线与x轴交点个数

  Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{x|x<-b/2a}上是减函数,在

  {x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

  当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2c(a≠0)

  特殊值的形式

  7.特殊值的形式

  ①当x=1时y=abc

  ②当x=-1时y=a-bc

  ③当x=2时y=4a2bc

  ④当x=-2时y=4a-2bc

  2、二次函数的性质

  8.定义域:R

  值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,

  正无穷);②[t,正无穷)

  奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。

  周期性:无

  解析式:

  ①y=ax^2bxc[一般式]

  ⑴a≠0

  ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

  ⑶极值点:(-b/2a,(4ac-b^2)/4a);

  ⑷Δ=b^2-4ac,

  Δ>0,图象与x轴交于两点:

  ([-b-√Δ]/2a,0)和([-b√Δ]/2a,0);

  Δ=0,图象与x轴交于一点:

  (-b/2a,0);

  Δ<0,图象与x轴无交点;

  ②y=a(x-h)^2k[顶点式]

  此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

  ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)

  对称轴X=(X1X2)/2当a>0且X≧(X1X2)/2时,Y随X的增大而增大,当a>0且X≦(X1X2)/2时Y随X的增大而减小,此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。

  交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1X2值。

  用函数观点看一元二次方程

  1.如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。

  2.二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

  实际问题与二次函数

  在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。

本文发布于:2022-11-09 20:30:51,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/82/461276.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:知识点   函数
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图