96558X
2010,-,008
匡 有感于“百家讲坛’’开讲《弟子规
张奠宙赵小平
“创新”需要好的基础,这是朴素的道理.规
7月以来,中央电视台10频道的“百家讲坛”
栏目,由钱文忠主讲《弟子规》,感慨良多.所谓
弟子规,就是做学生应当遵守的规矩.俗话说“无
规矩不成方圆”.中小学教育必须让未来的公民
懂得做人处事的规矩,这是天经地义的事.
基础教育的目标是打基础,本无疑问.可是
眼下的情形是一切都讲创新,“创新”也要从娃娃
抓起;中小学基础教育的目标变成了向高一级学
校输送人才,一切以考分和升学定输赢.有种
说法是,中国本土没有出现诺贝尔科学奖得主的
原因是基础教育不创新.可是反问一句:许多科
学大师,包括获诺贝尔奖的华人科学家,早年在
定青少年接受9年或12年的教育,是要让他们懂
得做人的规矩,掌握做事的知识,获取基本的在
社会上立足前进的能力.即便是因材施教,让一
些智优生能够站到“巨人”的肩膀上,能够在未来
攀登科学高峰,仍然要养好一般的规矩,掌握科
学的基础知识.
那么,今天学生的数学基础是否牢靠?大学
数学系老师常常诧异某些高考高分考进来的学
生没有严谨规范的数学素养、数学的表述,缺乏
数学的规矩.而高考的评分方法则是替学生‘‘往
好的方向”去揣摩,尽量给高分,如此这般地纵容,
使许多学生在试卷上“尽量多写一点,多写可能
多得分”,数学的逻辑、严谨、简练等基本要求
全然不顾.如此基础,何谈创新?基础教育还是
要讲打基础,学规矩。
大陆接受中小学教育,难道那时的教育比现在还
新?事实上,他们所接受的也是打基础的教育.
钱学森说过:“我在北京师大附中学习几何学,使
我懂得了什么是严谨科学”.
(上接第8—16页)
p/
故选(C).
点评:本题是一道用平面向量“包装”的解析
几何题,将向量表示翻译成几何性质是求解的关
键.本题综合考查了椭圆与双曲线中基本量的
计算、平面向量的运算等,体现了在知识的交汇
点处命题的指导思想,考查学生综合运用知识分
析问题和解决问题的能力.
\F1)0 \
|
图l0
z
l
定价:5.50元 国内统一连续出版物号:CN31-1024/G4每月12日出版代号:4—357
本文发布于:2022-10-26 14:08:07,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/82/381476.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |