分式方程专项练习50题(有答案)
13
(1)=
xx+2
2x
1
x1
2x1
4(3)
1x
(2)
5x-3
(4)+=0
xx
(5)
(6)
13
xx2
21
x12
21
0
x1x1
(7)
(8)
x1
1
x1x1
2x53
(9)
x22x
(10)
2x1
1
x1x1
x43x
2
2x1
(11)
xx
(12)
(13)
(14)
(15)
(16)
3x1
2x4x22
2x2
1
2x52x5
x11
-=
x-32x-62
4x3
1
x22x
2x
1
xx3
3x212
2x(17)
x2
(18)
(19)
(20)
(21)
(22)
(23)
(24)
32
1
x3x1
x2
-
2
=1
x-2x-4x+4
24
=
2x1
x1
2x5
=1
2x55x2
105
=2
2x112x
23x3
2x1x1x1
x2x1
1
x1x
(25)
(26)
xx1
2
x1x
32
xx1
2x21
(27)2x
x2
x1
1..
(28)
x1x
(29)
23
0.
x2x
x2
3
-=0
x1
x(x1)
12
x1x1
(30)
(31)
(32)
x24
2
1
x2x4
316
2x1x1x1
(33)
23
x1x1
124
2
(26)(35)
x1x1x1
(34)
x2x
1
x13x3
3x1
(37)1
x44x
(36)
(38)
.
(39)
(40)
(41)
(42)
x5
1
2x552x
x14
2
1
x1
x1
mn
0(mn过分水岭,mn0).
xx1
11
x25x6x2x6
2x1
10
x33x
(43)
(44)
3x1
2x4x22
x2x
=+1
x+13x+3
(45)
2y3y1
1
y1y
x+4
3
(46)=
x(x-1)x-1
(47)
|x|5
=0
2x5x
x2
x22x
(48)x
(49)
114
2x3x3x9
111
x
y
3
(50)
11
2
xy9
(51)
答案:
13
(1)=x=1
xx+2
(2)
x2x4x6x8
x1x3x5x7
2x
1x=-1
x1
(3)
2x11
4x
21x
5x-3
(4)+=0x=﹣2
xx
(5)
(7)
13
x1
xx2
21
x=5
x12
21
0x=3
x1x1
(7)
(8)
(9)
(10)
x1
1x=0
x1x1
2x53
x1
x22x
2x1
x=21
x1x1
x43x
2
2x1
x4(11)
xx
(12)
(13)
(14)
(15)
(16)
3x15
x
3
2x4x22
2x2
35
1x=
2x52x5
6
x11
-=x=-2
x-32x-62
4x35
1x=
x22x3
2x
1x=6
xx3
3x212
2xx6(17)
x2
(18)
(19)
(20)
323
x=1
5x3x1
x2
-
2
=1x=3那些花儿 范玮琪.
x-2x-4x+4
24
=
2x1
x1
x=1是原方程的增根,原方程无解windy什么意思啊.
(22)
(22)
(27)
(28)
(25)
(26)
7
2x5
=1x=
2x55x23
1057
=2x=.
42x112x
23x3
2
x=1是增根.所以原方程无解.
x1x1x1
x2x11
x
1
2
x1x
1
xx1
2x
2
x1x
32
x3.
xx1
1
2x21
(27)2x
x
4x2
x11
1.x.
2
(28)
x1x
(29)
23
0.x=6
x2x
x2
3
-=0
x1
x(x1)
(30)
检验x=1是原方程的增根
所以,原方程无解
(31)
(32)
12
x3
.
x1x1
x24
2
1x3
x2x4
316
x2
2x1x1x1
(33)
23
x=5
x1x1
124
(35)x=1是增根.所以原方程无解.
2x1x1x1
(34)
x2x3
1x
x13x32
3x1
(37)x=31
x44x
(36)
(38)
.
(39)
(40)
(41)
(43)
(43)
(44)
x5
x=0
1
2x552x
x14
2
1
x1为增根,此题无解;
x1
x1
mnm
.0(mn超市的英文,mn0).x
nm
xx1
11
x=3
22x5x6xx6
2x1
10
x=2
x33x
3x15
x
32x4x22
x2x
3
=+1x=-
x+13x+32
(45)
2y3y1
1
1
y
y1y
3
x+4
3
(46)=x=2
x(x-1)x-1
(47)
|x|5
=0x=5
x25x
(48)x
(49)
x2
x1
x22x
114
x=2
2x3x3x9
111
x
y
3
(50)
112
xy9
(51)
3
x
2
3
x
1
皓月当空造句,2
3
y
2
2
y
1
3
x2x4x6x8
x1x3x5x7
1111
111
x1x3x5x7
1111
x1x3x5x7
原方程化为1
方程两边通分学习感想,得
22
(x1)(x3)(x5)(x7)
(x5)(x7)(x13)(x)
化简得8x32
解得x4
经检验:x是原方程的根。4
本文发布于:2022-09-24 22:29:37,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/82/181451.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |