有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析 的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。
有限元分析法(FEA)已应用得非常广泛,现已成为年创收达数十亿美元的相关产业的基础。即使是很复杂的应力问题的数值解,用有限元分析的常规方法就能得到。此方法是如此的重要,以至于即便像这些只对材料力学作入门性论述的模块,也应该略述其主要特点。不管有限元法是如何的卓有成效,当你应用此法及类似的方法时,计算机解的缺点必须牢记在心头:这些解不一定能揭示诸如材料性能、几何特征等重要的变量是如何影响应力的。一旦输入数据有误,结果就会大相径庭,而分析者却难以觉察。所以理论建模最重要的作用可能是使设计者的直觉变得敏锐。有限元程序的用户应该为此目标部署设计策略,以尽可能多的封闭解和实验分析作为计算机仿真的补充。与现代微机上许多字处理和电子制表软件包相比,有限元的程序不那么复杂。然而,这些程序的复杂程度依然使大部分用户无法有效地编写自己所需的程序。可以买到一些预先编好的商用程序1,其价格范围宽,从微机到超级计算机都可兼容。但有特定需求的用户也不必对程序的开发望而生畏,你会发现,从诸如齐凯维奇(Zienkiewicz2)等的教材中提供的程序资源可作为有用的起点。大部分有限元软件是用Fortran语言编写的,但诸如felt等某些更新的程序用的是C语言或其它更时新的程序语言。
在实践中,有限元分析法通常由三个主要步骤组成: 1、预处理:用户需建立物体待分析部分的模型,在此模型中,该部分的几何形状被分割成若干个离散的子区域——或称为“单元”。各单元在一些称为“结点”的离散点上相互连接。这些结点中有的有固定的位移,而其余的有给定的载荷。准备这样的模型可能极其耗费时间,所以商用程序之间的相互竞争就在于:如何用最友好的图形化界面的“预处理模块”,来帮助用户完成这项繁琐乏味的工作。有些预处理模块作为计算机化的画图和设计过程的组成部分,可在先前存在的CAD文件中覆盖网格,因而可以方便地完成有限元分析。 2、分析:把预处理模块准备好的数据输入到有限元程序中,从而构成并求解用线性或非线性代数方程表示的系统
u和f分别为各结点的位移和作用的外力。矩阵K的形式取决于求解问题的类型。 3、分析的早期,用户需仔细地研读程序运算后产生的大量数字,即 型,本模块将概述桁架与线弹性体应力分析的方法。商用程序可能带有非常大的单元库,不同类型的单元适用于范围广泛的各类问题。有限元法的主要优点之一就是:许多不同类型的问题都可用相同的程序来处理,区别仅在于从单元库中指定适合于不同问题的单元类型。
1.弹性力学分析问题
2.平衡问题
3.固体力学
4.工程力学
将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。
步骤1:剖分:
将待解区域进行分割,离散成有限个元素的集合。元素(单元)的形状原则上是任意的。二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等。每个单元的顶点称为节点(或结点)。
步骤2:单元分析:
进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数。
步骤3:求解近似变分方程
用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。
有限单元法最早可上溯到20世纪40年代。Courant第一次应用定义在三角区域上的分片连续函数和最小位能原理来求解St.Venant扭转问题。现代有限单元法的第一个成功的尝试是在 1956年,Turner、Clough等人在分析飞机结构时,将钢架位移法推广应用于弹性力学平面问题,给出了用三角形单元求得平面应力问题的正确答案。1960年,Clough进一步处理了平面弹性问题,并第一次提出了有限单元法,使人们认识到它的功效。
50年代末60年代初,中国的计算数学刚起步不久,在对外隔绝的情况下,冯康带领一个小组的科技人员走出了从实践到理论,再从理论到实践的发展中国计算数学的成功之路。当时的研究解决了大量的有关工程设计应力分析的大型椭圆方程计算问题,积累了丰富而有效的经验。冯康对此加以总结提高,作出了系统的理论结果。1965年冯康在《应用数学与计算数学》上发表的论文《基于变分原理的差分格式》,是中国独立于西方系统地创始了有限元法的标志。
有限元法常应用于流体力学、电磁力学、结构力学计算,使用有限元软件ANSYS、COMSOL等进行有限元模拟,在预研设计阶段代替实验测试,节省成本。
从有限元的基本方法派生出来的方法很多,则称为三维单元。如有限条法、边界元法、杂交元法、非协调元法和拟协调元法等,用以解决特殊的问题。
本文发布于:2022-10-25 00:28:10,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/78/368249.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |