锂离子电池,一种二次电池

更新时间:2022-10-15 17:04:54 阅读: 评论:0

发展沿革

1970年,埃克森的M.S.Whittingham采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂。电池组装完成后电池即有电压,不需充电。锂离子电池(Li-ionBatteries)是锂电池发展而来。举例来讲,以前照相机里用的扣式电池就属于锂电池。这种电池也可以充电,但循环性能不好,在充放电循环过程中容易形成锂结晶,造成电池内部短路,所以一般情况下这种电池是禁止充电的。

1982年伊利诺伊理工大学(theIllinoisInstituteofTechnology)的R.R.Agarwal和J.R.Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。与此同时,采用金属锂制成的锂电池,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。首个可用的锂离子石墨电极由贝尔实验室试制成功。

1983年M.Thackeray、J.Goodenough等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。

1989年,A.Manthiram和J.Goodenough发现采用聚合阴离子的正极将产生更高的电压。

1992年日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。随后,锂离子电池革新了消费电子产品的面貌。此类以钴酸锂作为正极材料的电池,是便携电子器件的主要电源。

1996年Padhi和Goodenough发现具有橄榄石结构的磷酸盐,如磷酸铁锂(LiFePO4),比传统的正极材料更具安全性,尤其耐高温,耐过充电性能远超过传统锂离子电池材料。

纵观电池发展的历史,可以看出当前世界电池工业发展的三个特点,一是绿色环保电池迅猛发展,包括锂离子蓄电池、氢镍电池等;二是一次电池向蓄电池转化,这符合可持续发展战略;三是电池进一步向小、轻、薄方向发展。在商品化的可充电池中,锂离子电池的比能量最高,特别是聚合物锂离子电池,可以实现可充电池的薄形化。正因为锂离子电池的体积比能量和质量比能量高,可充且无污染,具备当前电池工业发展的三大特点,因此在发达国家中有较快的增长。电信、信息市场的发展,特别是移动电话和笔记本电脑的大量使用,给锂离子电池带来了市场机遇。而锂离子电池中的聚合物锂离子电池以其在安全性的独特优势,将逐步取代液体电解质锂离子电池,而成为锂离子电池的主流。聚合物锂离子电池被誉为“21世纪的电池”,将开辟蓄电池的新时代,发展前景十分乐观。

2015年3月,日本夏普与京都大学的田中功教授联手成功研发出了使用寿命可达70年之久的锂离子电池。此次试制出的长寿锂离子电池,体积为8立方厘米,充放电次数可达2.5万次。并且夏普方面表示,此长寿锂离子电池实际充放电1万次之后,其性能依旧稳定。

2022年5月,中国科学院深圳先进院碳中和(筹)研究所唐永炳研究员团队的一项新型锂离子电池技术正式完成规模化量产。

2022年6月,英国萨里大学(University of Surrey)研究人员成功开发出新型高密度固态锂离子电池,提高了固态锂离子电池的寿命和稳定性。

2022年7月5日消息,加州大学圣地亚哥分校(University of California San Diego)的工程师采用新电解质开发出新锂离子电池,可在极冷和酷热的条件下表现良好,同时还能储存大量能量。这是因为新电解质不仅在具有较宽的工作温度范围,且用途广泛、坚固耐用,此外还能与高能阳极和阴极兼容。同日消息,中国科学院青岛生物能源与过程研究所武建飞研究员带领的先进储能材料与技术研究组,在硫化物全固态锂离子电池领域的基础科学问题和电池规模化制备技术方面,取得了一系列突破性新进展。

配置参数

钢壳/铝壳/圆柱/软包装系列:

(1)正极——活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电极流体使用厚度10--20微米的电解铝箔。

(2)隔膜——一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。

(3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。

(4)有机电解液——溶解有六氟磷酸锂的碳酸酯类溶剂,聚合物的则使用凝胶状电解液。

(5)电池外壳——分为钢壳(方型很少使用)、铝壳、镀镍铁壳(圆柱电池使用)、铝塑膜(软包装)等,还有电池的盖帽,也是电池的正负极引出端。锂离子电池

功能特性

对于锂离子电池安全性能的考核指标,国际上规定了非常严格的标准,一只合格的锂离子电池在安全性能上应该满足以下条件:

(1)短路:不起火,不爆炸

(2)过充电:不起火,不爆炸

(3)热箱试验:不起火,不爆炸(150℃恒温10min)

(4)针剌:不爆炸(用Ф3mm钉穿透电池)

(5)平板冲击:不起火,不爆炸(10kg重物自1M高处砸向电池)

(6)焚烧:不爆炸(煤气火焰烧烤电池)

优点

电压高

单体电池的工作电压高达3.7-3.8V(磷酸铁锂的是3.2V),是Ni-Cd、Ni-MH电池的3倍。

能量大

能达到的实际比能量为555Wh/kg左右,即材料能达到150mAh/g以上的比容量(3--4倍于Ni-Cd,2--3倍于Ni-MH),已接近于其理论值的约88%。

循环寿命长

一般均可达到500次以上,甚至1000次以上,磷酸铁锂的可以达到2000次以上。对于小电流放电的电器,电池的使用期限,将倍增电器的竞争力。

安全性能好

无公害,无记忆效应。作为Li-ion前身锂离子电池的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。

区别

锂离子电池容易与下面两种电池混淆:

(1)锂电池:以金属锂为负极。

(2)锂离子电池:使用非水液态有机电解质。

(3)锂离子聚合物电池:用聚合物来凝胶化液态有机溶剂,或者直接用全固态电解质。锂离子电池一般以石墨类碳材料为负极。

市场需求

锂离子电池需求情况重点考察手机和笔记本两大下游的情况。2013年前5个月国内的手机总产量为5.58亿部,同比增长22.02%,其中5月产量为1.23亿部,同比增长32.80%。手机市场的需求情况较好。同期,国内笔记本计算机的总产量为9526.38万台,同比增长3.86%,其中5月产量为1756.34万台,同比减少8.12%。笔记本市场的总体表现比较一般。鉴于手机市场的较好表现,我们认为2013年全年锂电池行业的需求有望总体维持稳定增长。

此外,隔膜作为锂离子电池关键的四大原材料之一,受益于下游新能源汽车电池的带动,全球锂离子电池隔膜产业发展迅速,就中国市场而言,2014年全国隔膜产量达到5.75亿平方米,占据全球产量的大约48%左右。

政策标准

我国首部锂离子电池强制标准于2015年8月1号正式实施。

为加强锂离子电池行业管理,提高行业发展水平,引导产业转型升级和结构调整,推动锂离子电池产业持续健康发展,2015年12月11日,工信部发布了《锂离子电池行业规范条件》征求意见稿,明确了锂离子电池企业和产品的准入规则。

优点

1)电压高

单体电池的工作电压高达3.7-3.8V(磷酸铁锂的是3.2V),是Ni-Cd、Ni-MH电池的3倍。

2)比能量大

能达到的实际比能量为555Wh/kg左右,即材料能达到150mAh/g以上的比容量(3-4倍于Ni-Cd,2-3倍于Ni-MH),已接近于其理论值的约88%。

3)循环寿命长

一般均可达到500次以上,甚至1000次以上,磷酸铁锂的可以达到8000次。对于小电流放电的电器,电池的使用期限,将倍增电器的竞争力。

4)安全性能好

无公害,无记忆效应。作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素;部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。

5)自放电小

室温下充满电的Li-ion储存1个月后的自放电率为2%左右,大大低于Ni-Cd的25-30%,Ni-MH的30-35%。

6)快速充电

1C充电30分钟容量可以达到标称容量的80%以上,磷铁电池可以达到10分钟充电到标称容量的90%。

7)工作温度

工作温度为-25~45°C,随着电解液和正极的改进,期望能扩宽到-40~70°C。

缺点

衰老

与其它充电电池不同,锂离子电池的容量会缓慢衰退,与使用次数有关,也与温度有关。这种衰退的现象可以用容量减小表示,也可以用内阻升高表示。

因为与温度有关,所以在工作电流高的电子产品更容易体现。用钛酸锂取代石墨似乎可以延长寿命。储存温度与容量永久损失速度的关系:

充电电量储存温度0℃储存温度25℃储存温度40℃储存温度60℃
40%~60%2%/年4%/年15%/年25%/年
100%6%/年20%/年35%/年80%/6月

回收率

大约有1%的出厂新品因种种原因需要回收。

不耐受过充

过充电时,过量嵌入的锂离子会永久固定于晶格中,无法再释放,可导致电池寿命短。

不耐受过放

过放电时,电极脱嵌过多锂离子,可导致晶格坍塌,从而缩短寿命。

多重保护机制

由于错误使用会减少寿命,甚至可能导致爆炸,所以,锂离子电池设计时增加了多种保护机制。

保护电路

防止过充、过放、过载、过热。

排气孔

因其具有防爆炸功能,电池界业内人士也称为防爆孔或防爆线。原理十分简单,在壳体表面划出一条比壳体表面厚度稍微薄一点的线或孔,当电芯短路时,电池内部短时间内将产生大量气体并迅速增大压强,当压力过载时,因防爆孔薄于壳体其余地方,气体便防爆孔处泄气,从而达到避免电芯整体爆炸的危险。

隔膜

隔离电芯正、负极片,以防止卷芯内部正、负极片直接接触造成短路;从微观角度看,隔膜表面为网状结构,通常有PP、PE之分,也有PE、PP复合在一起的。

区分隔膜通常按厚度、宽度进行划分,铝壳锂离子电池使用的隔膜厚度通常为16um、18um、20um等,动力电池使用的隔膜厚度以30um以上为主流。

若按形状区分则有卷状、条状之分。卷状隔膜就是将裁剪好宽度的隔膜卷在一个纸筒上,供客户自行裁剪隔膜单条长度(形状与透明胶相似)。条状隔膜则由供应商按客户提供的长、宽、厚等参数,直接裁剪好成条状的隔膜。卷状隔膜的优点在于通用性强,但需增加人力进行裁剪,条状隔膜优点在于无需人力裁剪即可使用,但是通用性不强。

隔膜在电池内部温度过高时还能融化,以防止电池爆炸。当电池内部温度达到130℃(锂离子电池国家标准GB18287-2000)以上时,隔膜的网状孔将闭合,阻止锂离子通过升高内阻(至2kΩ),以达到阻止电芯内部温度继续升高的作用,从而保护电芯产生爆炸的危险。

排气孔、隔膜一旦激活,电池将永久失效。

锂电池鼓壳

锂是化学周期表上直径最小也最活泼的金属。体积小所以容量密度高,广受消费者与工程师欢迎。但是,化学特性太活泼,则带来了极高的危险性。锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。

锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。放电时,整个程序倒过来。为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

本文发布于:2022-10-15 17:04:54,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/78/287471.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:锂离子电池
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图