圆,一种几何图形

更新时间:2022-10-11 03:20:19 阅读: 评论:0

圆的定义

第一定义

在同一平面内到定点的距离等于定长的点的 集合叫做 圆(circle)。这个定点叫做圆的 圆心。

圆形一周的长度,就是圆的 周长。能够重合的两个圆叫 等圆,等圆有无数条对称轴。

圆是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0。

第二定义

平面内一动点到两定点的距离之比(或距离的平方之比),等于一个不为1的常数,则此动点的轨迹是圆。

证明:点坐标为(x,y)与(x,y),动点为(x,y),距离比为k,由两点距离公式。满足方程当k不为1时,整理得到一个圆的方程。

几何法:假设定点为A,B,动点为P,满足,过P点作角APB的内、外角平分线,交AB与AB的延长线于C,D两点由角平分线性质,角。由角平分线定理:,注意到唯一k确定了C和D的位置,C在线段AB内,D在AB延长线上,对于所有的P,P在以CD为直径的圆上。

圆的对称性

圆是轴对称图形,对称轴在过圆心的直线上,圆有无数条对称轴。

相关特点

1.连接圆心和圆上的任意一点的线段叫做 半径,字母表示为r(radius)

2.通过圆心并且两端都在圆上的线段叫做 直径,字母表示为d(diameter)。直径所在的直线是圆的对称轴。

圆的直径

1.连接圆上任意两点的线段叫做 弦(chord).在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。

1.圆上任意两点间的部分叫做圆弧,简称弧(arc)以“⌒”表示。

2.大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。

3.在同圆或等圆中,能够互相重合的两条弧叫做 等弧。

1.顶点在圆心上的角叫做 圆心角(central angle)。

2. 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做 圆周角。圆周角等于相同弧所对的圆心角的一半。

圆周率

圆[一种几何图形]圆周长度与圆的直径长度的比值叫做 圆周率。它是一个无限不循环小数,通常用字母 π表示,

计算时通常取近似值3.14。我们可以说圆的周长是直径的π倍,或大约3.14倍,不能直接说圆的周长是直径的3.14倍。

1.由弦和它所对的一段弧围成的图形叫做 弓形。

2. 由圆心角的两条半径和圆心角所对应的一段弧围成的图形叫做 扇形(ctor)。

表示方式

圆—⊙ ;半径—r或R(在环形圆中外环半径表示的字母);圆心—O;弧—⌒;直径—d ;

扇形弧长—L ;周长—C ;面积—S。

计算公式

圆的周长公式

圆的周长:圆周长的一半

半圆的周长

圆的周长公式推导(此方面涉及到弧微分)

设圆的参数方程为,

圆在一周内周长的积分

代入,可得

圆的面积公式

圆的面积计算公式:或 或

圆的面积求直径:

把圆分成若干等份,可以拼成一个近似的长方形。长方形的宽相当于圆的半径。

圆锥侧面积(l为母线长)

弧长角度公式

扇形弧长(θ为圆心角)(R为扇形半径)

扇形面积(L为扇形的弧长)

圆锥底面半径(r为底面半径)(n为圆心角)

扇形面积公式

R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。

也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:

(L为弧长,R为扇形半径)

推导过程:

位置关系

点和圆位置关系

①P在圆O外,则。

②P在圆O上,则 。

③P在圆O内,则 。

反之亦然。

平面内,点P(x,y)与圆的位置关系判断一般方法是:

①如果,则P在圆内。

②如果,则P在圆上。

③如果,则P在圆外。

直线和圆位置关系

①直线和圆无公共点,称相离。 AB与圆O相离,。

②直线和圆有两个公共点,称相交,这条直线叫做圆的 割线。AB与⊙O相交,。

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的 切线,这个唯一的公共点叫做 切点。圆心与切点的连线垂直于切线。AB与⊙O相切,。(d为圆心到直线的距离)

平面内,直线与圆的位置关系判断一般方法是:

1.由,可得,(其中B不等于0),代入,即成为一个关于x的方程

如果,则圆与直线有2个公共点,即圆与直线相交。

如果,则圆与直线有1个公共点,即圆与直线相切。

如果,则圆与直线有无公共点,即圆与直线相离。

2.如果即直线为,即,它平行于y轴(或垂直于x轴),将化为,令,求出此时的两个x值x、x,并且规定,那么:

当或时,直线与圆相离;

当时,直线与圆相交。

圆和圆位置关系

①无公共点,一圆在另一圆之外叫外离,在之内叫内含。

②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

设两圆的半径分别为R和r,且,圆心距为P,则结论:外离;外切;内含;

内切;相交。

圆的性质

⑴圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

⑵有关圆周角和圆心角的性质和定理

① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

圆心角计算公式: (弧度)。

即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

⑶有关外接圆和内切圆的性质和定理

①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③(R:内切圆半径,S:三角形面积,L:三角形周长)。

④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)

⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AC与BD分别交PQ于X,Y,则M为XY之中点。

(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

(5)弦切角的度数等于它所夹的弧的度数的一半。

(6)圆内角的度数等于这个角所对的弧的度数之和的一半。

(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。

(8)周长相等,圆面积比正方形、长方形、三角形的面积大。

相关定理

切线定理

圆[一种几何图形]垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。

切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

切线的性质:

(1)经过切点垂直于过切点的半径的直线是圆的切线。

(2)经过切点垂直于切线的直线必经过圆心。

(3)圆的切线垂直于经过切点的半径。

切线长定理

从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

以下简述切线长定理的证明。

欲证,只需证。

设OC、OB为圆的两条半径,又

在Rt△ABO和Rt△ACO中

∴(H.L)

∴,且,且。

切割线定理

切割线定理的证明:

圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点,则有

设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则

证明:连接AT, BT

∵(弦切角定理)

(公共角)

∴(两角对应相等,两三角形相似)

即:

割线定理

割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

一条直线与一条弧线有两个公共点,我们就说这条直线是这条曲线的割线。

与割线有关的定理有:割线定理、切割线定理。常运用于有关于圆的题中。

与切割线定理相似:两条割线交于p点,割线m交圆于两点,割线n交圆于两点,则。

如图直线ABP和CDP是自点P引的⊙O的两条割线,求证:

圆[一种几何图形]证明:连接AD、BC∵∠A和

∠C都对弧BD

∴由圆周角定理,得

又∵

(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。)

垂径定理

垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

设在⊙O中,DC为直径, AB是弦,AB⊥DC于点E,AB、CD交于E,求证:,,

连接OA、OB分别交⊙O于点A、点B

∵OA、OB是⊙O的半径

∴是等腰三角形

∴(等腰三角形三线合一)

弦切角定理

弦切角等于对应的圆周角。(弦切角就是切线与弦所夹的角)

已知:直线PT切圆O于点C,BC、AC为圆O的弦。

求证:

证明:设圆心为O,连接OC,OB,。

又∵

又∵

综上所述:

圆的方程

1、圆的标准方程:

在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是。

特别地,以原点为圆心,半径为r()的圆的标准方程为。

2、圆的一般方程:

方程可变形为.故有:

(1)当时,方程表示以为圆心,以 为半径的圆;

(2)当时,方程表示一个点;

(3)当时,方程不表示任何图形。

3、圆的参数方程:

以点O(a,b)为圆心,以r为半径的圆的参数方程是(其中θ为参数)

圆的端点式:

若已知两点A(a,b),B(a,b),则以线段AB为直径的圆的方程为

圆的离心率e=0,在圆上任意一点的曲率半径都是r。

经过圆上一点M(a,b)的切线方程为

在圆()外一点M(a,b)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为,

4、圆的三点式方程:过不共线的三点A(x,y),B(x,y),C(x,y)的圆的方程为

绘制方式

一般情况下可用圆规画出圆形,或用一段绳子,一头固定在地上,一头转,就能转出圆,绳子越长,圆越大。

用AutoCAD绘圆

在AutoCAD“绘图”下拉菜单中,列出了6种“圆”的绘制方法,简述如下:

(1)利用圆心和半径绘圆:用鼠标点取绘图命令,然后根据提示操作;

(2)利用圆心和直径绘圆:用鼠标点取绘图命令,然后根据提示操作;

(3)以两点确定直径绘圆:用鼠标点取绘图命令,然后根据提示操作;

(4)以三点确定直径绘圆:用鼠标点取绘图命令,然后根据提示操作;

(5)以确定半径与两个图形对象相切绘圆:用鼠标点取绘图命令,然后根据提示操作。

richtext控件绘圆

定义一个数组,该数组用来存储一个或多个坐标(Point)

然后按照以下步骤来实现

1 生成一个控件(如Label),并调整相应的属性

2 在内存中建立一张临时的图像作为画布,使用GDI+等各种绘图,将图像绘制到画布上

3 将生成的控件Image或BackGroundImage属性值设定为步骤2生成的图像

4 使用RichTextBox1.Controls.Add方法,将控件添加进去(您可以指定它的坐标)

5 将当前已经添加的控件的坐标记录在数组中(如对应第1个数据)

6 添加RichTextBox1.Scroll事件代码,在该代码中,

圆过获取滚动条的值来计算已添加控件应该所在的位置

说明:控件可以通过代码生成(推荐)

该方法与网上流传的QQ聊天窗口内RichTextBox方法不同,

属于简单型

您务必要定义一个数组,用来参与ScrollBar滚动时,将目标控件重新定位

历史介绍

圆形,是一个看来简单,实际上是十分奇妙的形状。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。

约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。

会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。

任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。它是一个无限不循环小数,但在实际运用中一般只取它的近似值,即.如果用C表示圆的周长:或.《周髀算经》上说周三径一,把圆周率看成3,但是这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。魏晋时期的刘徽于公元263年给《九章算术》作注时,发现周三径一只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,。刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:称为约率,称为密率。在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。如今有了电子计算机,圆周率已经算到了小数点后五万亿位小数了。

本文发布于:2022-10-11 03:20:19,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/78/248669.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:认识距离
下一篇:圆堂圆
标签:
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图